“Leading edge experimental techniques”:

Ultra fast optical spectroscopy

Laura Herz

Outline

1. Introduction
2. Generation of ultra short laser pulses
 i. Mode-locking
 • The principle
 • Active/passive techniques
 ii. Pulse characterization
3. Ultra fast spectroscopic techniques
 i. PL up-conversion
 ii. PL X-correlation
 iii. Transient absorption/reflection
 iv. Transient grating techniques
4. Not-quite-so-fast techniques
Ultra fast optical spectroscopy

Why ultra fast?

Relaxation processes in photoexcited matter:

- Optical phonon scattering
- Acoustic phonon scattering
- Intervalley scattering
- Carrier-carrier scattering
- Carrier recombination
- Electronic relaxation
- Nuclear relaxation
- Charge transfer

<table>
<thead>
<tr>
<th>Time (s)</th>
<th>1 fs</th>
<th>1 ps</th>
<th>1 ns</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-15}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10^{-12}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10^{-9}</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Due to these processes, relaxation times are on the order of 10 fs - 1 ps.

Definition of “ultra fast”: The term “ultra fast” currently implies a timescale of ≈ 10 fs - 1 ps.

Examples of ultra fast processes:

- cis-trans isomerization of rhodopsin: ~ 60 fs (important step in vision)
- electron transfer in photosynthetic reaction centres: ~ 100 fs
- carrier thermalization in GaAs: ~ 100 fs

The general idea of ultra fast spectroscopy:

1. Trigger an event with a short laser pulse
2. Probe the dynamics of a process with a second pulse

Delay δ
Ultra fast optical spectroscopy

Longitudinal modes in a laser cavity:

\[\lambda \]

For a cavity mode to be sustained we need:

\[2L = q\lambda \]

⇒ Frequency spacing of longitudinal modes:

\[\Delta \nu = \frac{\nu_{q+1} - \nu_q}{c} = \frac{\lambda_{q+1}}{c} - \frac{\lambda_q}{c} = \frac{2L}{c} \]

Homogeneously broadened medium:

All cavity modes compete for the same gain medium.

After a while, only the mode with the strongest gain will oscillate.

⇒ Single-mode operation

Inhomogeneously broadened medium:

Cavity modes compete for different components of the gain medium.

All modes for which the gain is larger than the losses can oscillate.

⇒ Multi-mode operation
Ultra fast optical spectroscopy

Take a laser sustaining two longitudinal modes:

\[E_1 = \hat{E} \cos(\omega_0 t + \varphi_0(t)) \]
\[E_2 = \hat{E} \cos(\omega_0 + 1 \cdot t + \varphi_{0+1}(t)) \]

Output Intensity is the square of the sum:

\[I = (E_1 + E_2)^2 \]
\[= 4\hat{E}^2 \sin^2 \left[\frac{\omega_0 + 1 - \omega_0}{2} t + \frac{\varphi_0 + 1 - \varphi_0}{2} \right] \cos^2 \left[\frac{\omega_0 + 1 - \omega_0}{2} t + \frac{\varphi_0 + 1 - \varphi_0}{2} \right] \]

term varying at optical frequency \(\sim 10^{14} \text{ Hz} \)

Envelope varying slowly with \(\Delta \nu = c/2L \) if the two phases are locked in time (i.e. non-random)

Can we make a pulsed laser using this?

Answer: yes!
(If we can lock together the phases of many modes in time)

\[\Delta \nu = \frac{c}{2L} \]
Ultra fast optical spectroscopy

Lock together a Gaussian distribution of modes:

\[E(t) = \sum_{n=0}^{\infty} E_n \exp(i\omega_n t) \quad \text{with} \quad \omega_n = \omega_0 + n\Delta\omega \]

and \[E_n = E_0 \exp \left[-\left(\frac{2n\Delta\omega}{\Delta\omega_0} \right)^2 \ln 2 \right] \]

\[E(t) = \exp(i\omega_0 t) \sum_{n=0}^{\infty} E_n \exp(in\Delta\omega t) \]

fourier transform of \(E_n \)

⇒ Intensity of laser output:

\[\langle I \rangle = \langle E(t) E^*(t) \rangle \propto \exp \left[-\left(\frac{2t}{\tau_p} \right)^2 \ln 2 \right] \]

with pulse duration: \[\tau_p = \frac{2\sqrt{2}}{\pi} \Delta\omega_0 \ln 2 \Rightarrow \text{pulses are the shorter, the broader the gain medium!} \]

Ultra fast optical spectroscopy

⇒ to generate ultra short pulses we need to use particularly broad gain media to lock together as many modes as possible
Ultra fast optical spectroscopy

Examples for broad gain media:

Organic dyes:
broad spectra caused by strong electron-phonon coupling in π-conjugated molecules

Ion-doped crystals:
solid-state, allowing high gains at low noise

Ultra fast optical spectroscopy

Mode-locking techniques

Idea: make cavity losses larger for continuous (CW) operation than for pulsed operation

Active mode-locking:
introduce cavity losses modulated at the frequency $\Delta \nu = c/2L$
(using e.g. an acousto-optic modulator)

Passive mode-locking:
introduce cavity losses which can be overcome if a pulse should propagate (e.g. Kerr-lens or saturable absorber)
Ultra fast optical spectroscopy

The principle of Kerr-lens mode-locking

A lens is a lens because the phase delay seen by a beam varies with x:

$$\phi(x) = n k L(x)$$

In both cases, a quadratic variation of the phase with x yields a lens.

What if L is constant, but n varies with x?

$$\phi(x) = n(x) k L$$

Refractive index n for a "Kerr medium" depends on light intensity I as:

$$n(\omega, I) = n_0(\omega) + n_2(\omega) I$$

Intense pulse with spatially varying profile will experience a lens!

Place slit in focal plane to introduce losses for CW mode.
Ultra fast optical spectroscopy

The principle of Kerr-lens mode-locking

- CW mode
- Pulsed mode
- Monitor the output spectrum of the laser as a function of the slit width d.

Laser is mode-locked (pulsed operation)

Ultra fast optical spectroscopy

Passive mode-locking using saturable absorbers

- Use one dye as gain medium and another as saturable absorber.

Strong excitation may "bleach" the absorption as almost all molecules transfer to the excited state \Rightarrow decreased losses for pulsed operation

<table>
<thead>
<tr>
<th>Gain dye</th>
<th>Saturable absorber</th>
<th>Wavelength in nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rho6G</td>
<td>DODCI, DDI</td>
<td>575-620</td>
</tr>
<tr>
<td>Ktou Red</td>
<td>DQOCI</td>
<td>600-655</td>
</tr>
<tr>
<td>DCM</td>
<td>DODCI, DTDCI</td>
<td>620-660</td>
</tr>
<tr>
<td>Pyridine 1</td>
<td>DTDCI, DODI</td>
<td>670-740</td>
</tr>
<tr>
<td>LD 700</td>
<td>DTDCI, DODI, IR 140</td>
<td>700-800</td>
</tr>
<tr>
<td>Pyridine 2</td>
<td>IR 140, HITC</td>
<td>690-770</td>
</tr>
<tr>
<td>Styril 9M</td>
<td>DODI, IR 140</td>
<td>780-860</td>
</tr>
</tbody>
</table>
Ultra fast optical spectroscopy

Example: The Colliding-pulse mode-locked (CPM) dye laser

- Produced the first sub-100fs laser pulses!
- Ring cavity: two counter-propagating pulse trains meet in the saturable absorber
- Two prism pairs to compensate for dispersion of optical media inside cavity
- Use of dye jets results in noise

Example: The mode-locked Ti:Sapphire laser (today’s “work horse”)

- Ti$^{3+}$ ions can replace up to 0.1% of Al$^{3+}$ ions in Al$_2$O$_3$ (Sapphire)
- Ionic radius of Ti$^{3+}$ 26% larger than that of Al$^{3+}$
- Strong distortion of local environment \rightarrow strong local fields which split excited state into sublevels
- Ground and excited state strongly coupled to Sapphire matrix \rightarrow strong electron-phonon coupling
 \Rightarrow VERY broad gain medium (\geq200nm)
Ultra fast optical spectroscopy

Commercially available mode-locked Ti:Sapphire lasers

Coherent MIRA 900-F:

![Diagram of Coherent MIRA 900-F](image)

Output Power:

<table>
<thead>
<tr>
<th>Type</th>
<th>Output Power (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(VersaMax: YS pump)</td>
<td>0.51 W</td>
</tr>
<tr>
<td>(VersaMax: Q-switched)</td>
<td>1.6 W</td>
</tr>
<tr>
<td>(VersaMax: Q-switch)</td>
<td>1.1 W</td>
</tr>
<tr>
<td>(VersaMax 310 W)</td>
<td>0.8 W</td>
</tr>
<tr>
<td>Sabre 14 W</td>
<td>1.4 W</td>
</tr>
</tbody>
</table>

Tuning Range: 700 to 980 nm (500 to 1000 nm typical)

Autocorrelation: <200 fs

Spectra Physics Tsunami:

![Diagram of Spectra Physics Tsunami](image)
Ultra fast optical spectroscopy

Measurement of the pulse duration

Laser pulse train \rightarrow GaAs pin-diode \rightarrow GHz Oscilloscope

Time resolution of (at most) ≈ 50 ps \rightarrow not sufficient to measure 100 fs pulses!

Ultra fast optical spectroscopy

Measurement of the pulse duration: Auto-correlation

Crystal requirements:
- Optical non-linearity, i.e.

 \[P = r_0 (\chi E + \chi^{(2)} E^2) \]
- Phase-matching of fundamental and 2nd harmonic (anisotropic crystal)

Autocorrelation trace:

FWHM \approx 35 fs
Ultra fast optical spectroscopy

Measurement of the pulse duration: Auto-correlation set-up

Auto-correlators are commercially widely available and typically allow measurement of pulse duration and spectrum:
Ultra fast optical spectroscopy

Photoluminescence up-conversion (PL UC)

Working principle: "gating" of PL in non-linear crystal using intense gate pulse

PL emitted from sample after excitation with laser pulse

"gate pulse"

time after excitation

nonlinear crystal

measure no. of sum-frequency photons as function of delay δ ⇒ time-resolved PL with 200fs resolution!

Aim: Measurement of PL with time-resolution of $\approx 200\text{fs}$
Ultra fast optical spectroscopy

Photoluminescence up-conversion (PL UC)

Example: Investigation into energy transfer in thin films of semiconducting polymer

- Perylene Monoimide End caps
- Polyindenofluorene π-conjugated backbone (~ 30 repeat units)

![Diagram of polymer structure]

PL from polymer

Photon Energy (eV)

- 2.0
- 2.5
- 3.0

PL intensity (arb. u.)

- 10
- 1
- 0.1

Abs. coeff. (10⁴ cm⁻¹)

PL from dye

0 10 20 30

Delay (ps)

2.00 eV

2.74 eV

PL intensity (arb. u.)

Example: Observation of resonant Rayleigh scattering from localized excitons in a semiconducting polymer (PPV)

Decoherence time (~ 400 fs) corresponds well with more recent measurements of the homogeneous linewidth (~ 2.5 meV, Müller et al. PRL 91 267403 (2003))

![Diagram of energy levels and density of states]

Kunst et al. PRL 86 4148 (2001)
Ultra fast optical spectroscopy

Photoluminescence cross-correlation: set-up

PL X-correlation gives the influence the presence of the first pulse has on the PL generated by the second pulse.

\[
S_\text{X}(E, \delta) = PL_{1+2}(E, \delta) - 2PL_1(E, \delta)
\]

CASE A: only one beam, chopped at \(f_1\) incident on the sample

CASE B: only the other beam, chopped at \(f_2\), incident on the sample

CASE C: both beams incident on the sample
Photoluminescence cross-correlation

Observation of state-filling effects in self-assembled InAs quantum dots

Ultra fast optical spectroscopy

Exciting the barrier now with circularly polarized light will produce carriers with particular spin orientation

⇒ probe sensitivity of state-filling in dots to spin statistics
Ultra fast optical spectroscopy

Transient absorption (or reflection) spectroscopy

Change of transmission of the probe beam due to the presence of the pump beam:

$\Delta T = T_{\text{pump on}} - T_{\text{pump off}}$

Example: transient probe spectra from a thin polyindenofluorene film

Ultra fast optical spectroscopy

Transient grating spectroscopy: Degenerate four-wave mixing

- Pump photons with wavevector \(k_1 \) generate a coherent polarization in the sample.
- Probe photons with \(k_2 \) arrive after delay \(\delta \).

If \(\delta \) is smaller than the decoherence time of the polarization, a transient interference grating is produced, of which the probe may be deflected along the phase matched direction \(2k_2 - k_1 \).

⇒ Technique of choice for investigating coherent evolution of excitations!

Ultra fast optical spectroscopy

Transient grating (four-wave mixing) spectroscopy

In bulk GaAs light-hole (lh) and heavy-hole (hh) bands are degenerate at the \(\Gamma \) point. Confinement (i.e., in a quantum well) lifts the degeneracy.

⇒ Can observe "quantum beats" (interference) between lh-e and hh-e transitions until the system is dephased!

![Diagram showing hh-lh splitting and quantum beats](image)

FIG. 3. Four-wave-mixing line shapes for the 170 Å quantum-well sample for excitation of the heavy-hole transition only (dashed line) and simultaneous excitation of heavy-hole and light-hole transitions (solid line). Lattice temperature \(T_L = 5 \) K and intensity \(\sim 100 \) kW/cm² are kept low.

Leo et al. PRB 44 5726 (1991)
Ultra fast optical spectroscopy

Time-correlated single photon counting (TCSPC)

Typical time-resolution: 50ps, i.e. much worse than PLUC, but TCSPC is significantly more sensitive

⇒ Use it to observe slower processes involving low PL intensities, e.g. on-chain transfer of photoexcitations in semiconducting polymers in solution:
Ultrafast optical spectroscopy

Time-resolving luminescence with a Streak Camera

Fig. 11.3a-e. Streak camera. (a) Design and (b) schematic diagram of the relation between the time profile $I(t)$ and the spatial distribution $X(u)$ at the output plane; (c) spectrally resolved time profiles $I(u, t)$.