
1

Ultra fast optical spectroscopy

“Leading edge experimental techniques”:

Ultra fast optical spectroscopy

Laura Herz

Ultra fast optical spectroscopy

Outline
1. Introduction
2. Generation of ultra short laser pulses

i. Mode-locking 
• The principle
• Active/passive techniques

ii. Pulse characterization
3. Ultra fast spectroscopic techniques

i. PL up-conversion
ii. PL X-correlation
iii. Transient absorption/reflection
iv. Transient grating techniques

4. Not-quite-so-fast techniques
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Ultra fast optical spectroscopy

Why ultra fast?

Charge transfer

Nuclear relaxation

Carrier-carrier 
scattering

Intervalley scattering

Electronic relaxation

Optical phonon scattering Acoustic phonon scattering

Time (s)
10-15 10-12 10-9

1 fs 1 ns1 ps

Carrier recombination

Relaxation processes in photoexcited matter: 

crystalline
semi-

conductors

molecules

Ultra fast optical spectroscopy

Definition of
“ultra fast”:

The term “ultra fast” currently implies a 
timescale of ≈ 10fs – 1ps.

Examples ofultra 
fast processes:

• cis-trans isomerization of rhodopsin 
~ 60 fs (important step in vision)

• electron transfer in photosynthetic 
reaction centres: ~ 100 fs

• carrier thermalization in GaAs: ~ 100 fs

The general idea of ultra fast spectroscopy:
1. Trigger an event with one short 

laser pulse
2. Probe the dynamics of a process 

with a second pulse
Delay δ

?
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Ultra fast optical spectroscopy

Longitudinal modes in a laser cavity: 

For a cavity mode to be 
sustained we need:

⇒ Frequency spacing of longitudinal modes:

L

λ
LASER = gain medium + resonator

loss

gain 
spectrum

Ultra fast optical spectroscopy

q+1 q+2qq-1q-2

gain
loss

q+1 q+2qq-1q-2

gain
loss

Homogeneously broadened medium:
All cavity modes compete for the 
same gain medium.
After a while, only the mode with 
the strongest gain will oscillate.
⇒ Single-mode operation

Inhomogeneously broadened 
medium:
Cavity modes compete for 
different components of the gain 
medium.
All modes for which the gain is 
larger than the losses can oscillate.
⇒ Multi-mode operation
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Ultra fast optical spectroscopy

Take a laser sustaining 
two longitudinal modes:

Output Intensity is the 
square of the sum:

time

term varying at optical 
frequency ∼1014 Hz

Envelope varying slowly with ∆ν
= c/2L if the two phases are 
locked in time (i.e. non-random)

Ultra fast optical spectroscopy

Can we make a pulsed laser using this?

Answer: yes !
(If we can lock 
together the 
phases of many 
modes in time )
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Ultra fast optical spectroscopy

Lock together a Gaussian distribution of modes:

with

and

fourier transform of En 

Intensity of 
laser output:

⇒

with pulse 
duration:

pulses are the shorter, the 
broader the gain medium!

⇒

Ultra fast optical spectroscopy

to generate ultra short pulses we need to use particularly 
broad gain media to lock together as many modes as possible

⇒
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Ultra fast optical spectroscopy

PL
 In

te
ns

ity

Examples for broad gain media:

Organic dyes:
broad spectra caused by 
strong electron – phonon 
coupling in π-conjugated 
molecules

Ion-doped crytals:
solid-state, allowing high 
gains at low noise

Ultra fast optical spectroscopy

Mode-locking techniques

Idea: make cavity losses larger for continuous (CW) 
operation than for pulsed operation

Active mode-locking:

introduce cavity losses 
modulated at the 
frequency ∆ν=c/2L 
(using e.g. an acousto-
optic modulator)

Passive mode-locking:

introduce cavity losses 
which can be overcome 
if a pulse should 
propagate (e.g. Kerr-
lens or saturable 
absorber)
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Ultra fast optical spectroscopy

xA lens is a lens 
because the phase 
delay seen by a 
beam varies with x:

φ(x) = n k L(x)

L(x)

What if L is 
constant, but n
varies with x?

φ(x) = n(x) k L

n(x)
x

In both cases, a 
quadratic variation 
of the phase with 
x yields a lens.

The principle of Kerr-lens mode-locking

Ultra fast optical spectroscopy

The principle of Kerr-lens mode-locking

Refractive index n for a “Kerr medium” 
depends on light intensity I as:

Intense pulse with 
spatially varying profile 
will experience a lens !

CW mode

pulsed mode

place slit in focal plane 
to introduce losses for 
CW mode



8

Ultra fast optical spectroscopy

The principle of Kerr-lens mode-locking

CW mode

pulsed mode

d 
monitor the output spectrum 
of the laser as a function of 
the slit width d:

laser is mode-locked
(pulsed operation)

Ultra fast optical spectroscopy

Passive mode-locking using saturable absorbers

Use one dye as gain 
medium and another as 
saturable absorber.

S1

S0

T1

Strong excitation may 
“bleach” the absorption as 
almost all molecules trans-
fer to the excited state 
⇒ decreased losses for 
pulsed operation

hν
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Example: The Colliding-pulse mode-locked (CPM) dye laser

• Produced the first sub-100fs laser pulses !
• Ring cavity: two counter-propagating pulse trains meet in the 

saturable absorber
• Two prism pairs to compensate for dispersion of optical 

media inside cavity
• Use of dye jets results in noise

Ultra fast optical spectroscopy

Example: The mode-locked Ti:Sapphire laser (todays “work horse”)

• Ti3+ ions can replace up to 0.1% 
of Al3+ ions in Al2O3 (Sapphire)

• ionic radius of Ti3+ 26% larger 
than that of Al3+

• strong distortion of local 
environment → strong local 
fields which split excited state 
into sublevels

• ground and excited state 
strongly coupled to Sapphire 
matrix → strong electron-
phonon coupling

⇒ VERY broad gain medium 
(≥200nm)

Absorption and emission 
spectra of Ti:Sapphire
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Ultra fast optical spectroscopy

Coherent MIRA 900-F:

Commercially available mode-locked Ti:Sapphire lasers

Ultra fast optical spectroscopy

Commercially available mode-locked Ti:Sapphire lasers

Spectra Physics Tsunami:
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Ultra fast optical spectroscopy

Measurement of the pulse duration

Time resolution of (at 
most) ≈50ps 
→ not sufficient to 
measure 100fs pulses !

laser pulse
train

GaAs 
pin-diode

GHz 
Oscilloscope

Ultra fast optical spectroscopy

Measurement of the pulse duration: Auto-correlation

δ

k1

k2

k1+k2

non-linear 
crystal 
(e.g. BBO) autocorrelation trace:

Crystal requirements:
• Optical non-linearity, i.e.

• Phase-matching of 
fundamental and 2nd

harmonic (anisotropic 
crystal)
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Ultra fast optical spectroscopy

Measurement of the pulse duration: Auto-correlation set-up

Ultra fast optical spectroscopy

Auto-correlators are commercially widely available and 
typically allow measurement of pulse duration and spectrum :
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Ultra fast optical spectroscopy

PL emitted from 
sample after 
excitation with 
laser pulse

nonlinear
crystal

kPL

kUC

kgate

time after excitation

δ
“gate pulse”

measure 
no. of sum-
frequency 
photons as 
function of 
delay δ
⇒ time-
resolved PL 
with 200fs 
resolution!

Photoluminescence up-conversion (PL UC)

Working principle: “gating” of PL in non-linear crystal using 
intense gate pulse

Ultra fast optical spectroscopy

CCD

L

L

LBBO
L

OAP

Time
Delay

gate
beam

PL UC

P
λ/2

Spectro-
meter

optical parametric
oscillator (OPO)

femto
second

Ti:Sapphire
laser

solid
state
pump

Sample

excitation
beam

UC 
Signal

Photoluminescence up-conversion (PL UC)
Aim: Measurement of PL with time-resolution of ≈200fs
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Photoluminescence up-conversion (PL UC)

Example: Investigation into 
energy transfer in thin films of 
semiconducting polymer

Ultra fast optical spectroscopy

Two-colour up-conversion: allowing investigation of resonant processes

Kennedy et al. PRL 86 4148 (2001)

Example: Observation of resonant 
Rayleigh scattering from localized 
excitons in a semiconducting 
polymer (PPV)
Decoherence time (≈ 400fs) 
corresponds well with more recent 
measurements of the homogeneous 
linewidth (≈ 2.5 meV, Müller et al. 
PRL 91 267403 (2003))

Density of States

En
er

gy

hν

hν
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Ultra fast optical spectroscopy

Photoluminescence cross-correlation: set-up

Ultra fast optical spectroscopy

Photoluminescence cross-correlation: working principle

⇒ PL X-correlation 
signal gives the 
influence the presence 
of the first pulse has 
on the PL generated by 
the second pulse
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Photoluminescence cross-correlation
Observation of state-filling effects in self-assembled InAs quantum dots

GaAs barrier
InAs dot layer
GaAs barrier

Ultra fast optical spectroscopy
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Photoluminescence cross-correlation
Observation of state-filling effects in self-assembled InAs quantum dots

Exciting the barrier now with circularly polarized light will 
produce carriers with particular spin orientation 
⇒ probe sensitivity of state-filling in dots to spin statistics
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Sample

Delay

Detector
(entire spectrum 

or single 
wavelength)

chopper

Change of transmission of the probe beam
due to the presence of the pump beam:

Transient absorption 
(or reflection) spectroscopy

Pump arrives before probe

Probe arrives before pump

Instrument 
resolution

∆T = Tpump on - Tpump off

Ultra fast optical spectroscopy

Transient absorption (or reflection) spectroscopy

Silva et al. Chem Phys Lett 319 494 (2000)

Example: transient probe spectra from a thin polyindenofluorene film

probe 
stimulates 
emission by 

recombination 
of excitons

absorption of probe 
by excitons

absorption of 
probe by 

photogenerated 
charges 

(polaron pairs 
of radical 

anion/cation 
intermolecular 

pairs)
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Transient grating spectroscopy: Degenerate four-wave mixing

δ

k1

k2

kDFWM = 
2k2 - k1

Pump photons with 
wavevector k1 generate 
a coherent polarization 
in the sample
Probe photons with k2
arrive after delay δ

If δ is smaller than the decoherence time of the polarization, a 
transient interference grating is produced, of which the probe 
may be deflected along the phase matched direction 2k2-k1.

⇒ Technique of choice for investigating 
coherent evolution of excitations !

Ultra fast optical spectroscopy

Transient grating (four-wave mixing) spectroscopy

Leo et al. PRB 44 5726 (1991)

In bulk GaAs light-hole (lh) and 
heavy-hole (hh) bands are 
degenerate at the Γ point.
Confinement (i.e. in a quantum 
well) lifts the degeneracy.
⇒ Can observe “quantum beats” 
(interference) between lh-e 
and hh-e transitions until the 
system is dephased !

1

|2>
|1>

|0>

hh-lh 
splitting ∆E 
(typ. few 
meV)
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Time-correlated single photon counting (TCSPC)
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Ultra fast optical spectroscopy
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hν

Time-correlated single photon counting (TCSPC)

Typical time-resolution: 50ps, i.e.
much worse than PLUC, but TCSPC 
is significantly more sensitive

⇒ Use it to observe slower 
processes involving low PL 
intensities, e.g. on-chain transfer 
of photoexcitations in 
semiconducting polymers in 
solution:

( )
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Ultra fast optical spectroscopy( )

Time-resolving luminescence with a Streak Camera


