
Revision Lecture on 

ELECTROMAGNETISM (CP2) 

•  Electrostatics 

•  Magnetostatics 

•  Induction 

•  EM Waves 

… based on previous years’ Prelims questions 



State Coulomb’s Law. Show how E field may be defined. 

What is meant by E is a conservative field? 
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Conservative field:                   and             is path- 

independent. Therefore, can define a potential. 
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A thundercloud with charges +40As at 10 km height and 

−40As at 6 km. Find the E-field on the ground. 
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Use method of image charges. Mirror the above to below 

the surface, with +40 As at depth 6 km and −40 As at 

depth 10 km. 

Field point upwards. 



An array of localised charges qi experience potentials Vi as 

a result of their mutual interaction. Show that their mutual 

electrostatic energy, W,  is given by 1
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Potential Vi due to all 

other charges: 

For total PE, sum over all charges. 

However, each charge appears twice: 0
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Alternative: Assemble Charge Configuration 

No penalty for charge q0 

 

q1 in potential due to q0 

 

q2 in potential of q0 and q1 

 

q3 in pot. of q0, q1 and q2 

Half the links compared with:            

       0           1            2           3 

1
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Thus: 



A sphere of radius a is located at a large distance from 

its surroundings which define the zero of potential. It 

carries a total charge q. Determine the potential on its 

surface and the electrostatic energy. 
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Uniformly charged sphere: 

Potential of the surface is the same for sphere and shell 

(Gauss; same charge inside)  3d dW V q V r  
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With Gauss’ Law: 
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Electron cloud:  
3

0 0

2
exp

e r
r

a a




 
    

 

2

2 3

0 0 0

1 2
exp sin

4
r

e r
E r d d dr

r a a
  

 

  
       

  


2 3

2 21 2 2

0 0 0
0

0

exp( )

2
here:        and       sin 4

r
r r r

ax ax ax

a a a
x ax dx x e x e e

a d d
a

   

  

  





     0 0 0

2 2

0 0 0

exp 2 / 1 2exp 2 / 2exp 2 /

4
r

r a r a r ae
E

r a r a

    
   

 



Explain qualitatively what happens when 

such an atom is placed in a steady, uniform 

electric field, of strength E0. 

Centres of gravity of the 

positive nucleus and the 

negative electron charge 

distribution shift. 

The atom exhibits an 

electric dipole moment. 
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Calculate the capacitance 

for a spherical capacitor: 
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The inner sphere is raised to a potential V and then 

isolated, the outer sphere being earthed. The outer 

sphere is then removed.  Find the resulting potential 

of the remaining sphere. 
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Maximum potential to which the inner sphere 

can be charged to: 

max 3000V/mm              0.9m        1.0mE a b  

E is maximal when r is minimal:   Consider E(a) 
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The electrostatic potential of a dipole: 
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The radial and tangential components of the E-field: 



Show that the torque exerted on a dipole by a 

uniform electric field E is pE. 
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Calculate the work done in bringing a dipole of 

equal magnitude from infinity to a distance r 

from the first along the normal to its axis.  



Find the angle  for which E(r, ) is in a 

direction normal to the axis of the dipole. 

Find angle for which  0z zp E   p E
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State the law of Biot-Savart: 0 3
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Two such coils are placed a 

distance d apart on the same 

axis. Find B as function of x. 
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Show that the derivative of B’ is 0 for x=0 
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Find the value of d for which the second 

derivative of B’(0) is 0. 
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Field of a pair of Helmholtz coils 

                     B in units of  0

2

nI

a



x

d

B 



Ampere's law in its integral form: 0d  

 (  enclosed)
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Integral independent of path: radially uniform field 

N turns of wire per unit length.  

Winding carries a current I. 

Find B and show it is radially uniform inside the coil. 



Calculate the self-inductance per unit length. 
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Ampere’s Law: 
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Sketch the magnitude of B when the inner 

cylinder is replaced by a solid wire 
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State the laws of electromagnetic induction 
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An emf will be created such as to 

counteract a change of current, etc  

Faraday disc (thickness d). 

Brushes around entire inner 

and outer perimeter. 

Magnetic flux density 

along axis of rotation. 
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Calculate the electrical resistance 
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in a magnetic flux density B 
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Find the optimum value for a load resistor 
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Define magnetic flux and state Faraday's law 

of electromagnetic induction. 

     and     
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 Calculate the resistance of the disc RD measured 

between the brushes. 
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Find the potential difference between the brushes: 

 2 21
16

15
1

2 2 32

B A B
emf a Ba


  

 


     

A load resistance RL is connected across the generator 

and the drive is removed. Calculate . 

 

2 2 2

2 2 2 2
2

1 1

2 4

15

32

rot

rot
dissipated

D L D L

E I ma

emfdE B a
P

dt R R R R

 



 

 
        

  



 

 

   

 

 

   

2

2

2 2 2

2 2 2

2

2 2

4
and     

15 4

32

15 4
ln

0 32

1
"half its angular speed":     

0 4

ln 232

15 2

rot

rot
rot

D L

rot

rot D L

rot

rot

D L

E

ma

dE B a
E

dt m R R

E t B a
t

E m R R

E t

E

m R R

a B







 
   

 

   
      

  



 
  
 



Two parallel rails separated by a distance d lie along the 
direction of greatest slope on an incline making an angle θ with 
the horizontal. A flat bar of mass m rests horizontally across the 
rails at the top of the incline. Both the bar and the rails are good 
conductors and the rails are joined by a large resistance R at the 
bottom of the incline. A uniform, vertical magnetic field of flux 
density B exists throughout the region.

B

dS

θ

v
vpara

vperp

m
vpara=v	
  sinθ
vperp=v	
  cosθ

vpara

l

d R

side	
  view top	
  view

θ



Induced e.m.f. emfV = −
d
dt

B•dS∫ = B cosθ dA
dt

where A=d l

emfV = −Bcosθ d dl
dt

=B cos θ d vpara

Induced current: I=Vemf /R

Equation of Motion - consider magnetic (Lorentz) force on 
current-carrying wire: dF=I dl × B

Fpara = I d B cos θ = Vemf /R  d B cos θ =  B2 d2 cos2θ /R vpara

d
dt

m     vpara = mg sinθ – B2 d2 cos2θ /R  vparaEquation of Motion:

d
dt

vpara + B2 d2 cos2θ /Rm vpara = g sinθ

k

gravitational magnetic



d
dt

vpara + k vpara = g sinθSolving Equation of Motion:

try vpara = A exp(–k t) +B B=sinθ g/kinsert into EoM

boundary condition: at t=0, vpara=0           A = –B

vpara = sinθ g/k (1 – exp(– k t))

vpara,∞ = sinθ g/k

vpara,∞ = g m R sinθ / (B2 d2 cos2θ)

for t ∞, constant velocity: 



A vertical loop is falling as shown below. 

Calculate the current in the loop. 

     

B area B a y

d dy
emf B a B a v

dt dt

V B a v
R I

I R

     


        

 
  



Describe the forces acting on the loop due to the 

magnetic field, and indicate their directions: 

            q F I a B     F v B

F 

F 

F I • Current (+e) clockwise 

• Force on these moving charges 

• Sideways forces cancel 

• Remaining force has decelerating effect 

Find R: 
810cm,  1mm,  1.7 10 mea D      

8 3

2 -6 2

4 4

4 4 0.1m
1.7 10 m 8.66 10

10 m
e

a
R

D 
  

        




… and the mass: 
3

kg
  with  8960

m
m mm V   

6 2 3

3

kg
8960 0.4m 10 m 2.814 10 kg

m 4
m

       

Calculate the steady state velocity, if this is reached while 

the upper arm of the loop is still in the magnetic field. 

2 2
0.266 m/s

B a v
F I a B a B m g

R

mgR
v

a B

 
       

 



In a particular experiment, a particle of mass m and charge +q moves with speed v
along the x-axis towards increasing x. Between x=0 and x=b, there is a region of 
uniform magnetic field B in the y-direction. Deduce the conditions under which 
the particle will reach the region x>b. In the event that it does reach this region, 
find an expression for the angle to the x-axis at which it will enter it.

θ

θ

r

r0
0

b

B

v
x

Lorentz force acts perpendicular to v and B.
Particle is forced onto circular path:

F = q v B = mv2/r
r = mv/(qB)

The particle will reach the region x > b if b < r, so need: b < mv/(qB)

If it reaches the region, it enters it at angle θ with: sin θ = b/r

sin θ = b q B / (m v)



In a second experiment, the same particle is accelerated from rest by a constant electric 
field E acting over a length d. The particle then encounters a region of constant magnetic 
field B perpendicular to its velocity, as shown in the figure below. Deduce the magnitude B
such that the particle will re-enter the region of constant electric field at a distance d from 
the point at which it left. Assuming this value of B, sketch the particle's trajectory in the 
region of constant magnetic field and derive an expression for the time spent there.

starting
point

end
point

r

d

Acceleration in E-field provides kinetic energy:

½ m v2 = q V = q E d

v = (2qEd/m)½

Lorentz force acts as centripetal force in the 
second region (with B-field): q v B =mv2/r

If the particle is to re-enter the electric field at a 
distance d from where it left, we need r=d/2:

B =2mv/(qd) = 2m/(qd) (2qEd/m)½

B =2 (2mE/(qd))½ is required



Explain why a displacement current is needed: 

0I B dl

d 0 0        
dE

dt

dE

dt
I Q A A A     

0 C 0 D 0 C D

0 0 0

Stokes: 

  

I I  

  

     
 

  

   

  

 

B dl J dA J dA

B dl BdA

B J E

Show Ampere’s Law in differential form: 



Maxwell’s equations in free space: 

0 0

0 0

 

   

    

E B

E B B E

Wave equation from these: 

 

 

0 0

0 0

2

2
0 0

0

 

wave equation:  

      

        

1
with: exp   :  

0

i t kx v










 





 

   

   

   

  

E B E

EE E

E E



Maxwell’s equations with charges and currents: 

Wave equation as before (for E and B fields): 

 
0

0 0

0

C




 

   

     

E B

E B B J E

0 0 0 00       and       0        E E B B

  2 2

0 0

0 0

from  exp :   0

1
        (speed of light)

i t kz k

c
k

   



 

     

   



Plane wave solution with Ey and Bx only: 

0 0

0 0
0 0

y x

x y z

y

E B

z t
i j k

E

 
 

 

   
   
   

           
   

  
  

E B

Ey is not a function of x 

d d d d
  integrate over z:

d d d d

d
                                            

d

y x x

y x

E B B z

z t z t

z
E B

t

  

 



Direction of propagation: 

   

   

y x

exp exp

exp   exp

        (in a vacuum)

 

i t kz ik i t kz
z

i t kz i i t kz
t

dz
c

dt k

E c B

 

  




      


      

 

 
for wave in positive z-direction  “−” 

for wave in negative z-direction “+” 

    … or:  use Poynting vector: 

to give direction of energy flow 
0

1


  N E B




