Supporting information for: Optimizing the Energy Offset Between Dye and Hole-Transporting Material in Solid-State Dye-Sensitized Solar Cells

Christian T. Weisspfennig,[†] Michael M. Lee,[†] Joël Teuscher,[†] Pablo Docampo,[†]

Samuel D. Stranks,[†] Hannah J. Joyce,[†] Hermann Bergmann,[‡] Ingmar Bruder,[‡]

Dmitry V. Kondratuk,[¶] Michael B. Johnston,[†] Henry J. Snaith,[†] and Laura M.

Herz*,†

Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford, OX1 3PU, United Kingdom, BASF SE, 67056 Ludwigshafen, Germany, and Dyson Perrins Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QY, United Kingdom

E-mail: I.herz1@physics.ox.ac.uk

^{*}To whom correspondence should be addressed [†]OxfordPhysics [‡]BASF

[¶]OxfordChemistry

Chemical Oxidation of HTM Solution Through Titration with NOBF₄

Figure S1: Stepwise chemical oxidation of 4×10^{-4} M HTM **1** in acetonitrile and chlorobenzene (1:1) with increasing amounts of NOBF₄: (a) From HTM $\mathbf{1}^0$ over HTM $\mathbf{1}^+$ to HTM $\mathbf{1}^{2+}$, (b) from HTM $\mathbf{1}^{2+}$ towards higher oxidized states.

Figure S2: Stepwise chemical oxidation of 4×10^{-4} M spiro-OMeTAD in acetonitrile and chlorobenzene (1:1) with increasing amounts of NOBF₄: (a) From spiro-OMeTAD⁰ over spiro-OMeTAD⁺ to spiro-OMeTAD²⁺, (b) from spiro-OMeTAD²⁺ towards spiro-OMeTAD⁴⁺.

Figure S3: Stepwise chemical oxidation of 4×10^{-4} M HTM **2** in acetonitrile and chlorobenzene (1:1) with increasing amounts of NOBF₄: (a) From HTM **2**⁰ over HTM **2**⁺ to HTM **2**²⁺, (b) from HTM **2**²⁺ towards higher oxidized states.

Figure S4: Stepwise chemical oxidation of 4×10^{-4} M HTM **3** in acetonitrile and chlorobenzene (1:1) with increasing amounts of NOBF₄: (a) From HTM **3**⁰ over HTM **3**⁺ to HTM **3**²⁺, (b) from HTM **3**²⁺ towards higher oxidized states.

Figure S5: Stepwise chemical oxidation at 520 nm of the four different hole-transporting materials for varying concentrations of NOBF₄.

Cyclic Voltammetry of Hole-Transporting Materials

Figure S6: Cyclic voltammetry of dissolved HTM $1 \, 1.7 \times 10^{-3}$ M in a solution of 0.1 M tetrabutylammonium hexafluorophosphate in dichloromethane. The scan rate was $100 \, \text{mVs}^{-1}$.

Figure S7: Cyclic voltammetry of dissolved spiro-OMeTAD 1.7×10^{-3} M in a solution of 0.1 M tetrabutylammonium hexafluorophosphate in dichloromethane. The scan rate was 100 mVs^{-1} .

Figure S8: Cyclic voltammetry of dissolved HTM **2** 1.8×10^{-3} M in a solution of 0.1 M tetrabutylammonium hexafluorophosphate in dichloromethane. The scan rate was 100 mVs^{-1} .

Figure S9: Cyclic voltammetry of dissolved HTM **3** 1.5×10^{-3} M in a solution of 0.1 M tetrabutylammonium hexafluorophosphate in dichloromethane. The scan rate was 100 mVs^{-1} .

Charge-Collection Efficiency

Figure S10: Charge-collection efficiency of each HTM for different short-circuit currents. The solid lines are a linear fit to the data.

Capacitance Measurements

Figure S11: Capacitance measurements for HTM1, spiro-OMeTAD and HTM2. The solid lines are an exponential fit to the capacitance.