ADVANCED MATERIALS

Supporting Information

for Adv. Mater., DOI: 10.1002/adma.201502608

Structured Organic–Inorganic Perovskite toward a Distributed Feedback Laser

Michael Saliba, Simon M. Wood, Jay B. Patel, Pabitra K. Nayak, Jian Huang, Jack A. Alexander-Webber, Bernard Wenger, Samuel D. Stranks, Maximilian T. Hörantner, Jacob Tse-Wei Wang, Robin J. Nicholas, Laura M. Herz, Michael B. Johnston, Stephen M. Morris, Henry J. Snaith, * and Moritz K. Riede* Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2013.

Supporting Information

Structured Organic-Inorganic Perovskite toward a Distributed Feedback Laser

By Michael Saliba^{1†}, Simon M. Wood², Jay B. Patel¹, Pabitra K. Nayak¹, Jian Huang¹, Jack A. Alexander-Webber¹, Bernard Wenger¹, Samuel D. Stranks¹, Maximilian T. Hörantner¹, Jacob Tse-Wei Wang¹, Robin J. Nicholas¹, Laura M. Herz¹, Michael B. Johnston¹, Stephen M. Morris², Henry J. Snaith^{1*}, and Moritz K. Riede^{1*}

¹Clarendon Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PU, UK

²Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK

Corresponding authors

* henry.snaith@physics.ox.ac.uk, moritz.riede@physics.ox.ac.uk

Present Address

[†]Laboratory of Photonics and Interfaces, École polytechnique fédérale de Lausanne, Station 6, 1015 Lausanne, Switzerland

Figure S1. (a) Multistamp containing 8 different corrugation patterns with periodicities varying from 370 to 440 nm in steps of 10 nm covering an area of 0.27 cm^2 per pattern. (The pattern in the bottom left was mainly left unpatterned to allow for a large area for control experiments.) (b) Thorlabs diffraction grating with a periodicity of ~416 nm covering an area of 1.6 cm^2 .

Figure S2. SEM top view of a ~ 120 nm thick evaporated perovskite layers on (a) an unpatterned substrate and (b-d) a patterned substrate with $\Lambda \sim 416$ nm

For Figure S3, we used a large-area single stamp (1.6 cm^2) with a periodicity of ~ 416 nm with a slightly lower corrugation depth and evaporated accordingly a thinner 80 nm perovskite film. Indeed, our observations are repeated in this system where we observed a clear amplified emission peak at 796 nm with FWHM of 1.4 nm, and a threshold at ~ 1 μ J/cm²/pulse. The experiment was repeated 3 times and showed the same trend each time.

Figure S3. (a) Emission from a full DFB structure (glass substrate with a corrugated polymer resist and evaporated perovskite) with $\Lambda \sim 416$ nm periodicity upon optically pumping at $\Lambda = 532$ nm for varying fluences with 1-ns pulses at repetition rate of 1 kHz. The curves for fluences below 0.5 μ J/cm²/pulse overlap as there is almost no signal anymore at such low excitations.

(b) Extracted PL intensity at the amplified emission peak (796 nm with FWHM of 1.4 nm) as a function of excitation fluence. The threshold is derived to be at $\sim 1 \mu J/cm^2/pulse$.

Table S1. Simulated fundamental DFB modes for different periodicities Λ . The effective indices of the waveguide modes are estimated by solving numerically the phase-matching conditions for a three-layer waveguide^[1] consisting of a polymer substrate, a 100-nm thick perovskite film and air as the cover medium. The refractive indices of the individual layers are assumed as fixed at 780 nm.

Mode	n _{eff}	Λ = 400 nm	$\Lambda = 410 \text{ nm}$	∕1 = 420nm
TE0	1.916	766	785	805
TM0	1.541	616	632	647

Figure S4. (a) Measured peak wavelength (squares) as a function of the periodicity Λ Calculated modes $\lambda = n_{eff} \times \Lambda$ (second order Braff scattering) with constant $n_{eff} = 1.9$ (triangles) and 2.0 (circles).

(b) Measured modes (squares) as a function of the periodicity $\boldsymbol{\Lambda}$

Calculated $n_{eff} = \lambda_{measured} / \Lambda$ (circles) using the measured modes indicating a drop in the effective refractive index with increasing wavelength.

Figure S5. Estimated lasing wavelength for a DFB grating with a periodicity of 400 nm over the film thickness using the smallest value for the refractive indices of perovskite in the 770 -800 nm range with $n_{800nm,Ball} = 2.507$ (squares) and the largest value $n_{770nm,Lin} = 2.853$ (circles) according to Ball *et al.*^[2] and Lin *et al.*^[3] The dashed curve takes the dispersion relation into account as measured by Ball *et al.*^[2] The vertical dashed line indicates the experimental film thickness emphasizing the importance of accurate optical data.

- [1] K. Okamoto, *Fundamentals of optical waveguides*, Academic press, London, UK, 2006.
- [2] J. M. Ball, S. D. Stranks, M. T. Hoerantner, S. Huettner, W. Zhang, E. J. W. Crossland, I. Ramirez, M. Riede, M. B. Johnston, R. H. Friend, H. J. Snaith, Energy & Environmental Science 2015, 8, 602.
- [3] Q. Q. Lin, A. Armin, R. C. R. Nagiri, P. L. Burn, P. Meredith, Nat Photonics **2015**, 9, 106.