
Sai Santosh Kumar Raavi,†,‖‖‖‖ Pablo Docampo,‡,∥ Christian Wehrenfennig,‡ Marcelo J. P. Alcocer,†,§ Golnaz Sadoughi,‡ Laura M. Herz,‡ Henry J. Snaith,*,† and Annamaria Petrozza*†

†Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano, Italy
‡Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
§Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy

Supporting Information

ABSTRACT: “Push—pull” structures have been considered a winning strategy for the design of fully organic molecules as sensitzers in dye-sensitized solar cells (DSSC). In this work we show that the presence of a molecular excited state with a strong charge-transfer character may be critical for charge generation when the total energy of the photoexcitation is too low to intercept accepting states in the TiO2 photoanode. Though hole transfer to the 2,2′,7,7′-tetakis(N,N-di-p-methoxyphenylamine)-9,9′-spirobiﬂuorene can be very fast, an electron–hole pair is likely to form at the organic interface, resulting in a possible traplike excitation. This leads to poor photocurrent generation in the solid state DSSC (ss-DSSC) device. We demonstrate that it is possible to overcome this issue by fabricating SnO2-based ss-DSSC. The resulting solar cell shows, for the first time, that a SnO2-based ss-DSSC can outperform a TiO2-based one when a perylene-based, low-band-gap, push—pull dye is used as sensitizer.

INTRODUCTION

In the field of excitonic solar cells, fully organic bulk-heterojunction solar cells and dye-sensitized solar cells (DSSC) have represented the two main research avenues in the past 20 years. Solid state dye-sensitized solar cells, first proposed by Bach and co-workers in 1998,1 can be considered a proper “hybridization” between the former categories. They replaced the I−/I3− redox electrolyte with an organic semiconductor, 2,2′-7,7′-tetakis(N,N-di-p-methoxyphenylamine)-9,9′-spirobiﬂuorene (Spiro-OMeTAD) as hole transporter material (HTM), to regenerate the photooxidized dye and transport charges. The first reported solid state DSSC (ss-DSSC) used a 4.2 μm thick mesoporous TiO2 film, sensitized with a low-extinction-coefﬁcient dye (N719). It exhibited a power conversion eﬃciency below 1%, while the same dye already showed an eﬃciency of over 7% when employed with a redox electrolyte.2

Solid state DSSCs had a slow take oﬀ, but their development sped up signiﬁcantly after a power conversion eﬃciency (PCE) of 5% was demonstrated, establishing it as a serious contender in the field of low-cost photovoltaics. By substituting the I−/I3− redox couple with a one-step dye regeneration process material, higher power conversion eﬃciencies can be targeted,3 as the associated loss in potential is reduced. However, this substitution brings about a strong reduction of the dielectric constant at the photoactive interface, negatively impacting charge separation and inducing greater recombination losses between holes in the hole transporter and electrons in the mesoporous structure.4 For this reason, ss-DSSCs suffer from severe thickness constraints,5,6 with maximum PCEs achieved for 2–3 μm thick ﬁlms. These are however not thick enough to absorb all available solar irradiation under conventional Ruthenium-based sensitization. This leads to the necessity of improving the light harvesting capability of the dye, moving the attention to fully organic dye molecules which generally show much higher extinction coeﬃcients than their ruthenium-based counterparts.7 Lots of activities have been focused on the use of push–pull organic dyes, consisting of molecules with strong electron donating and accepting moieties, which should sustain the formation of excited states with a strong charge-transfer character.7,8

In past years, perylene-based dyes have attracted much attention, offering the possibility of strongly tuning the intramolecular charge transfer (ICT) of the intrachain photoexcitation together with the tuning of the absorption spectrum. When these dyes are employed in electrolyte-based DSSCs,

Special Issue: Michael Grätzel Festschrift

Received: January 3, 2014
Revised: May 16, 2014
Published: May 16, 2014

© 2014 American Chemical Society
Edvinsson et al. demonstrated that the devices showed better performance when the strength of the molecular ICT was enhanced. This was attributed to an improvement in charge generation. However, they also found a threshold in the ICT strength, above which no further gains are achieved in electrolyte-based devices, while it is still performing well for charge generation in ss-DSSC. Fast reductive quenching, where hole transfer from the dye to the HTM happens before electrons have a chance to transfer into the mesoporous metal oxide, has been considered a possible mechanism favoring charge generation in ss-DSSC. In fact, it may be beneficial when, with the intent of reducing the sensitized band gap for solar spectrum matching and for reducing the loss in potential, the energy gap between the lowest unoccupied molecular orbital (LUMO) level of the dye and the effective conduction band (CB) edge of TiO₂ is minimized. In fact, the latter would slow down the electron-transfer rate. While on the other hand, once hole transfer is complete, free electrons on the dye can be more easily transferred to the metal oxide. However, this assumes that the hole in the hole conductor and the electron on the dye are already fully uncorrelated.

In this work we show that the presence of a molecular excited state with a strong charge-transfer character may be critical for charge generation when the total energy of the photoexcitation is too low to intercept accepting states in the TiO₂ photoanode. Though hole transfer to the Spiro-OmeTAD can be very fast, an electron–hole pair is likely to form at the organic interface, resulting in a possible traplike state. This leads to poor photocurrent generation in the ss-DSSC device. However, when mesoporous TiO₂ is replaced by SnO₂, the CB of which is about 0.3–0.5 eV farther from the vacuum level than in TiO₂, the photocurrent of the resulting cell doubles leading—for the first time—to higher power conversion efficiency compared to the corresponding TiO₂-based cell.

METHODS

Sample Preparation. Fluorine-doped tin oxide (FTO) coated glass sheets (15 Ω/□, Pilkington) were etched with zinc powder and HCl (4 M) to obtain the required electrode pattern. The sheets were then washed with soap (2% Hellmanex in water), deionized water, acetone, and ethanol and finally treated under an oxygen plasma for 10 min to remove the last traces of organic residues. The FTO sheets were subsequently coated with a nonporous layer of either SnO₂ (100 nm) for SnO₂-based devices or TiO₂ for titania-based devices. This layer was deposited by aerosol spray pyrolysis of the appropriate precursor (95% butyltin trichloride (Sigma-Aldrich) or titanium diisopropoxide bis(acetylacetonate)) mixed with ethanol in a 1:10 precursor:ethanol ratio at 450 °C using air as the carrier gas. During the deposition of the compact layer, the electrodes were masked so that the metal oxide layer only covered the FTO and not the deposition of the compact layer, the electrodes were masked so when mesoporous TiO₂ is replaced by SnO₂, the CB of which an electron through a shadow mask under high vacuum (10⁻⁶ mbar). To measure the photovoltaic properties correctly, the active areas of the devices were defined by metal optical masks with 0.09–0.125 cm² apertures that were glued onto the illuminated side. The typical photoelectric area as defined by the overlap between the silver electrode and the FTO was around 0.15 cm². Spectroscopy samples were prepared in the same way, but the FTO substrate was replaced with either a quartz substrate for terahertz (THz) measurements or a microscope glass slide for all other substrates. In order to deposit the additives without the hole transporter, the same amount of tBP and Li-TFSI was dissolved in chlorobenzene at 15 vol % concentration, and after the hole transporter was fully dissolved, 4-tert-butylylidine (IBP) was added with a volume to mass ratio of 1:26 (μL mg⁻¹) tBP:spiro-OmeTAD. Lithium bis(trifluoromethyl-sulfonyl)imide salt (Li-TFSI) was predissolved in acetonitrile at 170 mg mL⁻¹ and added to the hole transporter solution at 1:12 (μL mg⁻¹) Li-TFSI solution:Spiro-OmeTAD. The dyed films were rinsed briefly in dichloromethane and dried in air for 1 min.

Immediately after drying, a small quantity of the hole transporter solution (22 μL) was dispensed onto each substrate and was then spin-coated at 1500 rpm for 40 s in air. After spin-coating the hole transporter, the films were left overnight in an air atmosphere in the dark before they were placed in a thermal evaporator where 150 nm thick silver electrodes were deposited through a shadow mask under high vacuum (10⁻⁶ mbar). To measure the photovoltaic properties correctly, the active areas of the devices were defined by metal optical masks with 0.09–0.125 cm² apertures that were glued onto the illuminated side. The typical photoelectric area as defined by the overlap between the silver electrode and the FTO was around 0.15 cm². Spectroscopy samples were prepared in the same way, but the FTO substrate was replaced with either a quartz substrate for terahertz (THz) measurements or a microscope glass slide for all other substrates. In order to deposit the additives without the hole transporter, the same amount of tBP and Li-TFSI was dissolved in chlorobenzene and this solution was then spin-coated following the same protocol as for the spiro-containing devices.

Time-Resolved Photoluminescence. Time-resolved photoluminescence (PL) measurements were performed using a femtosecond laser source and streak camera detection system. An unamplified Ti:Sapphire laser (Coherent Chameleon Ultra II) operating at 80 MHz was tuned to provide pulses with central wavelengths of 980 nm, energies of ~10 nJ, and temporal and spectral bandwidths of ~140 fs and ~5 nm, respectively. A ½-barium borate crystal provided type I phase-matched second harmonic generation, leading to pulses with central wavelengths of 490 nm. These were focused onto the sample, maintaining a low fluence (<30 mJ/cm², ~100 μm spot diameter) in order to avoid any saturation effects in the sample. The resulting collected emission was analyzed by a spectrograph (Princeton Instruments Acton SP2300) coupled to a streak camera (Hamamatsu C5680) equipped with a synchroscan voltage sweep module. In this way, measurements of photoluminescence intensity as a function of both wavelength and time were obtained with spectral and temporal resolutions of ~1 nm and ~3 ps, respectively. Temporal broadening of the pump pulses caused by dispersive elements.
was confirmed to be well below the response time of the detection system.

Optical-Pump–THz–Probe Spectroscopy. The optical-pump–THz-probe setup\(^{18}\) uses a Ti:Sapphire regenerative amplifier to generate 40 fs pulses at 800 nm wavelength and a repetition rate of 1.1 kHz. Terahertz pulses are generated by optical rectification in a 2 mm ZnTe or a 450 \(\mu \)m thick GaP crystal and detected by electrooptic sampling in another ZnTe crystal of 0.2 mm thickness. Samples are optically excited at 545 nm wavelength using the output of an optical parametric amplifier (OPA). Measurements have been performed with the THz beam path and the sample in an evacuated chamber, at a pressure of about \(10^{-1} \) mbar.

RESULTS AND DISCUSSION

Figure 1a shows the chemical structure of the perylene-based dye termed ID504, which has a strong push–pull character; i.e., the highest occupied molecular orbital (HOMO) lies mainly on the triarylamine unit and the lowest unoccupied molecular orbital (LUMO) is strongly localized on the perylene unit.

Figure 1b shows the dye absorption spectra when adsorbed on an \(\text{Al}_2\text{O}_3 \) mesoporous substrate (squares), and in different environments: with Li-TFSI salts (circles), pristine Spiro-OMeTAD (up triangles), and Li-TFSI-salts-doped Spiro-OMeTAD (down triangles).

Figure 1. (a) Chemical structure of the perylene-based dye termed ID504; (b) ID504 absorption spectra when adsorbed on an \(\text{Al}_2\text{O}_3 \) mesoporous substrate (squares), and in different environments: with Li-TFSI salts (circles), pristine Spiro-OMeTAD (up triangles), and Li-TFSI-salts-doped Spiro-OMeTAD (down triangles).

The Journal of Physical Chemistry C

![Figure 1](https://example.com/figure1.png)

Figure 2 shows the time-resolved photoluminescence spectra of the same samples, at 4 ps and 1 ns after photoexcitation at 490 nm. The \(\text{Al}_2\text{O}_3/\text{ID504} \) sample, at 4 ps, shows a broad spectrum peaking at 645 nm which shifts to 700 nm in the first nanosecond (Figure 2a). Similar behavior is observed for \(\text{Al}_2\text{O}_3/\text{ID504}/\text{Spiro-OMeTAD} \) (Figure 2c). The scenario changes when the Li-TFSI salts are added. At 4 ps, the spectrum of \(\text{Al}_2\text{O}_3/\text{ID504} \) with Li-TFSI still peaks at 645 nm at early times but shifts to 725 nm within the first 1 ns (Figure 2b). Further changes are observed when Li-TFSI-doped hole transporter is deposited on the dye. At 4 ps the PL spectrum already peaks at 700 nm, with a shoulder at 660 nm, before shifting to 745 nm in the first nanosecond (Figure 2d). We rationalize these results based on the presence of a molecular intrachain charge-transfer state. Due to its dipolar character, this state is extremely sensitive to the molecular environment, in particular, to the medium dielectric and local electric fields. Experimental results on conjugated push–pull molecules suggest that in the case of a Marcus-type nonadiabatic electron-transfer process, these systems exhibit a locally excited localized singlet state and the CT state, whose equilibrium energy and oscillator strength depend on the medium-induced stabilization of the CT state and the temperature of the system.\(^{8,14}\) Depending on the strength of the electron donor/acceptor moieties of the molecules and on the strength of the dielectric/local electric field in the molecular environment, the intrachain CT can also be observable as a ground state absorption feature as demonstrated in Figure 1.

Time-resolved PL spectroscopy reveals that when exciting at 490 nm, the primary localized molecular exciton is first generated and, then, intrachain charge transfer occurs. When Li-TFSI salts are introduced, the primary excitation lifetime shortens and a more red-shifted CT emission peak with a longer lifetime emerges. This is the result of ionic charges, which have the potential to stabilize CT states in conjugated...
molecules by establishing local Coulomb fields that perturb the HOMO and LUMO orbital energies.13,15 The distribution of both anions and cations around the dye monolayer is thus expected to lead to local configurations where electron-hole pairs are separated under the influence of ions but the resulting state has also a lower total energy with respect to the vacuum level.

It is interesting to note here that when the ID504 is interfaced with the Li-TFSI-doped Spiro-OMeTAD, the emission shows a further red shift. It must be noted that the density of ions around the dye is expected to be lower. In fact the samples without and with the hole transporter were prepared using the same additive concentration; thus, in the presence of the HTM the ions will be dispersed also within the hole transporter molecular film. This seems to suggest that salts are not only stabilizing the dye intramolecular CT state but also inducing the formation of an emissive intermolecular CT state at the interface between the dye and the Spiro-OMeTAD molecule. Femtosecond-transient absorption (fs-TA) experiments show that hole transfer from the dye to the Spiro starts in the sub-picosecond time regime and is completed in tens of picosecond (see Figure S1 in the Supporting Information (SI)). However, we can infer from the photoluminescence data that this does not lead to 100% yield of free charges but to correlated electron-hole pairs which are eventually radiatively coupled to the ground state. The high-band-gap Al₂O₃ prevents electron transfer into its CB, and thus a different behavior may be expected when this material is integrated in the photovoltaic devices.

In order to shed light on the role of interfacial states in the complete devices, further investigations have been performed on TiO₂/ID504/HTM samples. In this configuration, upon photoexcitation, the intrachain electron transfer which stabilizes the photoexcitation in a CT state at lower energy with respect to the vacuum level is in competition with electron transfer at the dye/oxide interface from the localized molecular excitation. If hole transfer to the Spiro-OMeTAD is quicker than electron transfer to the metal oxide, reductive quenching of the photoexcitation can be observed. The fs-TA spectra are unfortunately quite congested, and only qualitative information can be extracted. The primary excitation is only partially quenched, and the intrachain electron transfer which leads to the stabilization of the CT state in the presence of the Al₂O₃ electron blocking layer is in competition with electron transfer to the TiO₂ (see Figure S2 in the SI). Hole transfer still starts in the sub-picosecond time regime (see Figures S2 and S3 in the SI); however, it becomes more difficult to probe in the presence of Li-TFSI as electroabsorption-like features11,16 and/or the photoinduced absorption (PA) band of the singlet CT state further stabilized overlap with the hole PA band (see Figure S4 in the SI).

THz time-resolved spectroscopy is a highly useful tool for investigating the dynamics of free charge carriers. In an optical—pump—terahertz—probe (OPTP) experiment, the sample is excited by an optical pulse and, then, after a well-defined delay, the sample is probed by a terahertz pulse, which is mainly sensitive to the presence of free charges. This allows studying dynamics of charge injection, trapping, and recombination with picosecond resolution. In particular, it avoids the complex process of band assignment necessary in optical probe transient absorption spectroscopy. Figure 3a shows the THz-photoinduced absorption, which is proportional to free carrier conductivity (i.e., the product of mobility and charge density), for the dye-sensitized TiO₂ nanoporous films as a function of time after excitation of ID504 dye at 545 nm. The metal oxide material has a sufficiently large band gap allowing almost exclusive excitation of the dye sensitizer. In this way, the measured photoconductivity signal originates from mobile electrons subsequently injected into the metal oxide films, while the holes on the dye molecules are essentially stationary. TiO₂/ID504 and TiO₂/ID504/HTM samples show that within the time resolution of the experiment of about 1 ps, electron injection is already complete. The subsequent decay dynamic can either be related to charge recombination or to a trapping of the mobile electrons in trap states available in the inorganic semiconductor. More intriguing are the dynamics in the presence of Li-TFSI. Notably, Li⁺ ions influence the position of the TiO₂ conduction band, inducing larger absolute values once adsorbed on the metal oxide surface. In principle this should induce a faster rate of electron injection into the semiconductor, due to a larger energy gap between the primary photoexcitation and the TiO₂ accepting states11,12 Despite this, OPTP reveals a slowing of the injection process in the presence of Li⁺, a phenomenon which becomes even more important when the HTM is present (growth of the photoconductivity up to 1.2 ns). Interestingly, the injection dynamics become slower as the CT states identified by time-resolved PL are stabilized and their total energy is reduced (see SI for a quantitative analysis of the PL and OPTP dynamics, correlating the two experiments) . The slower kinetics observed in the presence of the HTM seem also to corroborate our previous hypothesis regarding the formation of an interfacial state at the organic interface. These interfacial states in principle can act as intermediate states for charge separation. However, in this context they would result in undesired trap states, preventing the reductive quenching of the primary photoexcitation and...
The SnO$_2$-based device (8.4 mA cm$^{-2}$) observe that the short-circuit current is more than doubled in comparison to the CdS-based devices. This implies that SnO$_2$ should be more suitable for use with very low band-gap dyes. The photoexcited state may remain trapped at the organic semiconductor interface for hundreds of picoseconds (generally on a time scale slower than that observed for TiO$_2$, independently of the dye used17,18). Then, a slight decay starts, which is recovered in the presence of Spiro-OMeTAD and in 600 ps with Spiro-OMeTAD. This suggests that large absolute values of the CB edge of the metal oxide aids collection of charges from low-energy excitonic molecules.

Finally, we have tested the dye in a working ss-DSSC device employing the TiO$_2$ and SnO$_2$ photoanodes. The SnO$_2$ surface has been modified by an extremely thin MgO passivation layer, which notably slows the electron injection at the interface (see Figure S7 in the SI for the transient absorption data). We observe that the short-circuit current is more than doubled in the SnO$_2$-based device (8.4 mA cm$^{-2}$) with respect to 4 mA; see Figure 4 with an EQE peak of 80% (Figure 4b). This leads to a power conversion efficiency of the device of about 3%, overtaking, for the first time, the equivalent TiO$_2$-based device which shows less than 2% power conversion efficiency.

CONCLUSION

In conclusion, we show that the “push–pull” paradigm considered so far for the molecular design of fully organic molecules must be carefully handled. Efficient design of the hybrid interface in the presence of low-band-gap dyes is a critical issue. This is mainly due to the compromise between good solar spectrum match, good open-circuit voltage, and good energy level alignment at the hybrid interface which will influence the electron/hole transfer rate. Most of the time, the lowest excited state of the dye is very close to the semiconductor conduction band (if not resonant with trap states), thus making the electron-transfer process very inefficient and reductive quenching a strategic solution. We find that when the molecular exciton is stabilized in a low-energy CT state through efficient intramolecular electron transfer, if the metal oxide presents a significant energy barrier, the photoexcited state may remain trapped at the organic interface, though hole transfer from the dye to the HTM happens efficiently. This will lead to a loss in charge generation. Thus, a material shift paradigm must be considered in order to make the most of low-band-gap dyes. Here we implemented this strategy employing SnO$_2$ as an alternative to the dominating TiO$_2$ as photoanode material. This yields, overall, more efficient devices due to higher short-circuit currents, demonstrating, for the first time, a dye which performs better in a SnO$_2$ than a TiO$_2$-based solid state DSSC.
ACKNOWLEDGMENTS

The authors declare no competing financial interest.

REFERENCES

