Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2018.

Supporting Information

for Adv. Sci., DOI: 10.1002/advs.201700792

Hybrid Perovskites: Prospects for Concentrator Solar Cells

*Qianqian Lin, Zhiping Wang, Henry J. Snaith, Michael B. Johnston, and Laura M. Herz**

Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2016.

Supporting Information

Hybrid Perovskites: Prospects for Concentrator Solar Cells

Qianqian Lin^{1,2}, Zhiping Wang¹, Henry J. Snaith¹, Michael B. Johnston¹ and Laura M. Herz¹*

¹Department of Physics, University of Oxford, Clarendon Laboratory, Parks Rd, Oxford, OX1 3PU, UK

²School of Physics and Technology, Wuhan University, Wuhan 430072, P. R. China

Corresponding Author :

Prof Laura M. Herz

*E-mail: <u>laura.herz@physics.ox.ac.uk</u>

Contents:

- 1. Experimental details
- 2. Supporting tables and figures

1. Experimental details

Preparation of perovskite films. MAPbI₃ solution: 1 M perovskite precursor solution was prepared using a 4 : 1 (v : v) mixed solvent from anhydrous dimethylformamide (DMF) and dimethyl sulfoxide (DMSO) from Sigma-Aldrich with desired composition using precursor salts: methylammonium iodide (MAI; Dyesol), lead iodide (PbI₂; TCI), lead bromide (PbBr₂; TCI). FA_{0.83}Cs_{0.17}PbI_{2.7}Br_{0.3} solution: 0.6 M perovskite precursor solution was prepared using a 4 : 1 (v : v) mixed solvent from anhydrous DMF and DMSO (Sigma-Aldrich) with desired composition using precursor salts: formamidinium iodide (FAI; Dyesol), cesium iodide (CsI; Alfa Aesar), lead iodide (PbI₂; TCI), lead bromide (PbBr₂; TCI). FA_{0.7}MA_{0.25}Cs_{0.05}PbI_{2.7}Br_{0.3} solution: 0.6 M perovskite precursor solution was prepared using a 4 : 1 (v : v) mixed solvent from anhydrous DMF and DMSO (Sigma-Aldrich) with desired composition using precursor salts: formamidinium iodide (FAI; Dyesol), methylammonium iodide (MAI; Dyesol), cesium iodide (CsI; Alfa Aesar), lead iodide (PbI₂; TCI), lead bromide (PbBr₂; TCI). All the solutions were made in a nitrogen-filled glovebox and kept stirring overnight at room temperature. The MAPbI₃ films were deposited through a two-step spin coating program (10 s at 1000 rpm and 15 s at 6000 rpm) with dripping of anisole (Sigma-Aldrich) as anti-solvent during the second step, 10 s before the end. The films were then transferred to a hotplate immediately afterwards and annealed at 100 °C for 10 min. For films containing the FA-Cs and FA-MA-Cs mixtures, the precursor solutions were spin-coated through a two-step spin coating program (10 s at 1000 rpm and 35 s at 6000 rpm) with dripping of anisole (Sigma-Aldrich) as anti-solvent during the second step, 10 s before the end. The films were then annealed at 100 °C for 60 min. All the films were spin-coated in a drybox with relative humidity below 20%.

Preparation of quencher layers on perovskite films. [6,6]-phenyl C61 butyric acid methyl ester (PC61BM, Solenne) was dissolved in Chloroform at 30 mg mL⁻¹ and spin-coated at

1000 rpm for 30 s. Poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS, Heraeus) was spin-coated at 2000 rpm for 60s, and $N^2, N^2, N^2, N^7, N^7, N^7, N^7, N^7$ octakis(4-methoxyphenyl)-9,9'-spirobi[9H-fluorene]-2,2',7,7'-tetramine (Spiro-MeOTAD) solution was spin-coated at 2500 rpm for 40s. To obtain a spiro-OMeTAD solution, we dissolved 85.7mg spiro-OMeTAD (Borun Technology) in 1ml anhydrous chlorobenzene with additives of 28.8 µl tert-butylpyridine (tBP) and 20 µl lithium bis(trifluoromethylsulfonyl) imide (Li-TFSI) salt in acetonitrile (520 mg ml⁻¹).

Characterization of PL lifetime. PL spectra were acquired using a time-resolved single photon-counting set-up (FluoTime 300, PicoQuant). Samples were photo-excited using a 507 nm laser head (LDH-P-C-510, PicoQuant) with pulse duration of 117 ps, fluence of ~30 nJ cm⁻² per pulse and a repetition rate of 1 MHz. The PL was collected using a monochromator and hybrid photomultiplier detector assembly (PMA Hybrid 40, PicoQuant GmbH).

2. Supporting tables and figures

Multi-junction cells

cens.						
Classification	One-sun solar cell	Concentrator solar cell				
	Efficiency [%]	Efficiency [%]	Solar Concentration [Suns]			
Silicon	25.63 ^a	27.6 ^b	92			
GaAs	28.8 ^b	29.1 ^b	117			
CIGS	22.6 ^a	23.3 ^b	15			

 Table S1. Comparison of the record efficiencies of standard (one-sun) and concentrator solar cells.

a data taken from Ref. S1; b data taken from Ref. S2; c data taken from Ref. S3.

38.8 ^c

46.2^b

508

Perovskite formula	Monomolecular recombination rate [s ⁻¹]	Bimolecular recombination rate constant [cm ³ s ⁻¹]	Auger recombination rate constant [cm ⁶ s ⁻¹]	
CH ₃ NH ₃ PbI ₃	$15 imes 10^6$	$0.6 imes 10^{-10}$	$1.6 imes 10^{-28}$	Ref. S4
CH ₃ NH ₃ PbI _{3-x} Cl _x	$5 imes 10^6$	0.9×10^{10}	$1 imes 10^{-28}$	Ref. S5
CH(NH) ₂ PbI ₃	$7 imes 10^{6}$	$1.1 imes 10^{-10}$	$0.2 imes 10^{-28}$	Ref. S6
CH ₃ NH ₃ SnI ₃	$8 imes 10^9$	$14 imes 10^{-10}$		Ref. S7
CH ₃ NH ₃ PbI ₃ (calculated)		$0.1 \sim 1 \times 10^{10}$		Ref. S8
CH ₃ NH ₃ PbI ₃ (Cl)	$\sim 1 \times 10^6$			Ref. S9

Figure S1. Photoluminescence transients for thin films of various hybrid organic-inorganic perovskites, including a methylammonium (MA) perovskite (MAPbI₃), a formamidinium cesium (FACs) double-cation perovskite (FA_{0.83}Cs_{0.17}PbI_{2.7}Br_{0.3}) and a formamidinium – methylammonium-cesium (FAMACs) triple cation perovskite (FA_{0.7}MA_{0.25}Cs_{0.05}PbI_{2.7}Br_{0.3}). Data were taken using the TCSPC technique, following low-fluence pulsed excitation at a wavelength of 507nm. The lifetime values indicated for τ are derived from mono-exponential fits to the transients.

Figure S2. PL quenching transients measured for a thin film of the formamidinium cesium (FACs) double cation perovskite ($FA_{0.83}Cs_{0.17}PbI_{2.7}Br_{0.3}$) covered with a layer of various

transport materials, shown together with calculated curves based on various constant (timeindependent) charge extraction rates (solid lines).

Figure S3. Internal quantum efficiency (IQE) calculated as a function of solar concentration level for a typical single-junction perovskite solar cells (1.6eV bandgap), for variation of (**a**) the bimolecular charge-carrier recombination rate constant k_2 , (**b**) the monomolecular (trapmediated) recombination rate k_1 and (**c**) the charge extraction rate c_{ext} . Unvaried parameters were set to $k_1=10^6 \text{ s}^{-1}$, $k_2=10^{-10} \text{ cm}^3 \text{ s}^{-1}$, $k_3=10^{-28} \text{ cm}^6 \text{ s}^{-1}$ and $c_{ext}=10^8 \text{ s}^{-1}$ for the calculations.

Figure S4. (a) Open circuit voltage as a function of charge-carrier lifetime $\tau = k_1^{-1}$ for a typical single-junction perovskite solar cell, calculated for a number of different solar concentration levels. (b) Ideality factor *m*, for a range of different monomolecular recombination rates k_1 , as derived from the slope of the curves shown in **Figure 3b** that relate the open-circuit voltage V_{oc} to the Solar concentration (Suns), where $m = (q/k_BT)*d(V_{oc})/d(\ln(Suns))$,^{S10} and *Suns* is the illumination intensity normalized to that under standard solar (AM1.5) conditions. The Auger rate constant was set to $k_3 = 10^{-28}$ cm⁶s⁻¹ for all calculations.

Figure S5. Calculated *J*-*V* curves based on the Suns- V_{oc} method at an illumination of 118 Sun, for variation of the monomolecular recombination rate k_1 for fixed values of $k_2=10^{-10}$ cm³s⁻¹ and $k_3=10^{-28}$ cm⁶s⁻¹.

Figure S6. Fill factor as a function of solar concentration level calculated based on empirical relationship between FF and V_{oc} ,^[S11] for variation of (**a**) the bimolecular charge-carrier recombination rate constant k_2 at a fixed value of $k_1=10^6$ s⁻¹, and (**b**) the monomolecular (trap-

mediated) recombination rate k_1 for a fixed value of $k_2=10^{-10}$ cm³s⁻¹. The Auger rate constant was set to $k_3=10^{-28}$ cm⁶s⁻¹ for all calculations.

References:

[S1]. Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E. D., *Prog. Photovoltaics*, 2015, 23, 1-9.

[S2]. NREL Efficiency Chart, <u>https://www.nrel.gov/pv/assets/images/efficiency-chart.png</u>, accessed on 15th, July 2017

[S3]. P. Chiu, D. Law, R. Woo, S. Singer, D. Bhusari, W. Hong, A. Zakaria, J. Boisvert, S. Mesropian, R. King, "35.8% Space and 38.8% Terrestrial 5J Direct Bonded Cells", presented

at Photovoltaic Specialist Conference (PVSC), 2014 IEEE 40th, 2014.

[S4]. Milot, R. L.; Eperon, G. E.; Snaith, H. J.; Johnston, M. B.; Herz, L. M., Adv. Funct. Mater., 2015, 25, 6218-6227.

[S5]. Wehrenfennig, C.; Eperon, G. E.; Johnston, M. B.; Snaith, H. J.; Herz, L. M., Adv. Mater., 2014, 26, 1584-1589.

[S6]. Rehman, W.; Milot, R. L.; Eperon, G. E.; Wehrenfennig, C.; Boland, J. L.; Snaith, H. J.;Johnston, M. B.; Herz, L. M., *Adv. Mater.*, **2015**, *27*, 7938-7944.

[S7]. Noel, N. K.; Stranks, S. D.; Abate, A.; Wehrenfennig, C.; Guarnera, S.; Haghighirad, A.-A.; Sadhanala, A.; Eperon, G. E.; Pathak, S. K.; Johnston, M. B., *Energy Environ. Sci.*, 2014, 7, 3061-3068.

[S8]. Tress, W., Maximum Efficiency and Open-Circuit Voltage of Perovskite Solar Cells. In Organic-Inorganic Halide Perovskite Photovoltaics, Springer: 2016; p53-77.

[S9]. Vorpahl, S. M.; Stranks, S. D.; Nagaoka, H.; Eperon, G. E.; Ziffer, M. E.; Snaith, H. J.;Ginger, D. S., *Science*, 2015, *348*, 683-686.

[S10]. Beattie N S, Zoppi G, See P, et al., Sol. Energy Mater. Sol. Cells, 2014, 130, 241-245.

[S11]. M. A. Green, Solid-State Electron. 1981, 24, 788.