Angewandte
 Eine Zeitschrijt der Gesellschaft Deutscher Chemiker Chemie

Supporting Information

© Wiley-VCH 2008
69451 Weinheim, Germany

Enhanced π-Conjugation around a Porphyrin[6] Nanoring

Markus Hoffmann, ${ }^{\S}$ Joakim Kärnbratt, ${ }^{\dagger}$ Ming-Hua Chang, ${ }^{\#}$ Laura M. Herz, ${ }^{\#}$ Bo Albinsson, ${ }^{\dagger}$ and Harry L. Anderson ${ }^{\S}$
${ }^{\S}$ Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
"Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, UK
${ }^{\dagger}$ Department of Chemical and Biological Engineering, Physical and Organic Chemistry, Chalmers University of Technology, Kemivägen 10, S-412 96 Göteborg, Sweden

List of Contents

Materials and Methods S1-S12
Table S1. Fitted life times and pre-exponential factors to PL decays S2
Figure S1. PL decay curves for 1a, 1a.3, 4, and $\mathbf{4 \cdot 3}$ S3
Table S2. Calculated wavelengths and oscillator strengths from TD-DFT S3
Figure S2. Molecular orbitals calculated for $\mathbf{1 a} / \mathbf{b}$ S4
Scheme S1. Synthesis of linear porphyrin hexamer, 4 S5
Figure S3. COSY spectrum of cyclic hexamer • template, 1a•3 S13
Figure S4. HSQC spectrum of cyclic hexamer • template, 1a•3 S13
Figure S5. MALDI-TOF mass spectrum of cyclic hexamer • template, 1a•3 S14
Figure S6. MALDI-TOF mass spectrum of cyclic hexamer, 1a S14
Figure S7. UV/Vis titration of porphyrin dimer, $\mathbf{2 b}$ to template, $\mathbf{3}$ S15
Figure S8. UV/Vis titration of linear porphyrin hexamer, 4 to template, $\mathbf{3}$ S16
Figure S9. UV/Vis titration for $\mathbf{4 . 3}$ with pyridine, and $\mathbf{1 b} \cdot \mathbf{3}$ with quinuclidine S17
Equations S1-S5. Curve fitting for titration of $\mathbf{4 . 3}$ with pyridine, and $\mathbf{1 b} \cdot \mathbf{3}$ with quinuclidine S17
Scheme S2. Binding of quinuclidine, $\mathbf{G u}$ to porphyrin monomer S18
Figure S10. UV/Vis titration of quinuclidine, $\mathbf{G u}$ to porphyrin monomer S18
Scheme S3. Binding of 4-phenylpyridine, PhPy to porphyrin monomer S19
Figure S11. UV/Vis titration of 4-phenylpyridine, PhPy to porphyrin monomer S19
Scheme S4. Binding of pyridine, Py to porphyrin monomer S20
Figure S12. UV/Vis titration of pyridine, Py to porphyrin monomer S20

Materials and Methods

Fluorescence Spectra and Time-Resolved Fluorescence Decays

Emission spectra were recorded on a Spex Fluorolog 3 equipped with a xenon lamp and a NIR sensitive photomultiplier tube (R2658). Due to the low fluorescence quantum yield for the cyclic structures, a small amount of highly fluorescent impurities caused distortion of the emission spectra. The compounds $\mathbf{1 a - 3}$ and $\mathbf{1 a}$ were hence measured with excitation at longer wavelengths than the impurity absorption. Time-resolved fluorescence measurements were done by time-correlated single photon counting. The excitation pulse was provided by a Tsunami Ti:Sapphire laser (Spectra-Physics) which was pumped by a Millennia Pro X (Spectra-Physics). The Tsunami output was tuned between 920 nm and 1000 nm and subsequently frequency doubled to wavelengths between $460 \mathrm{~nm}-500 \mathrm{~nm}$. The emitted photons were collected by a thermoelectrically cooled micro-channel plate photomultiplier tube (R3809U-50, Hamamatsu). The signal was digitalized using a multichannel analyzer with 4096 channels (SPC-300, Edinburgh Analytical Instruments). The emission was collected at 780 nm for 4 and at 890 nm for $\mathbf{4 \cdot 3}, \mathbf{1 a \cdot 3}$ and 1a. The fluorescence decay curves were then fitted to either one or two-exponential expressions by the program FluoFit Pro v. 4 (PicoQuant GmbH). The time-resolved fluorescence decay curves are shown in Figure S . Fitted parameters are listed in Table S 1 where $\tau_{\mathbf{1}}$ represents the intrinsic fluorescence life time. 4 was fitted to a double-exponential model where the short life time corresponds to the previously observed conformational relaxation from twisted to planar conformation in the exited state of conjugated porphyrin oligomers. ${ }^{[1]}$ Due to overlapping fluorescence from an impurity (presumably an aggregated linear oligomer) and weak detector sensitivity above 850 nm , the fitting procedure of the circular hexamers where difficult and $\mathbf{4 . 3}$ and 1a could only be fitted using two exponentials where the short life time was attributed to the impurity emission.

Table S1. Fitted life times (τ_{1} and τ_{2}) and pre-exponential factors (a_{1} and a_{2}) from the fluorescence decays of $\mathbf{4}, \mathbf{4} \cdot \mathbf{3}, \mathbf{1} \mathbf{a} \cdot \mathbf{3}$ and $\mathbf{1 a}$ such as those plotted in Figure S1.

	$\tau_{1}(\mathbf{p s})$	$\boldsymbol{a}_{\mathbf{1}}$	$\tau_{2}(\mathbf{p s})$	$\boldsymbol{a}_{\mathbf{2}}$	$\boldsymbol{X}^{\mathbf{2}}$ red
$\mathbf{4}$	650	0.2	190	0.8	1.1
$\mathbf{4 \cdot 3}$	500	0.4	200	0.6	1.1
$\mathbf{1 a \cdot 3}$	340	1	-	-	1.2
$\mathbf{1 a}$	460	0.5	170	0.5	1.1

Figure S1. PL decay curves for (a) 1a, (b) 1a.3, (c) 4, and (d) $\mathbf{4 . 3}$ in toluene (the solvent for $\mathbf{1 a}$ and $\mathbf{4}$ contained 1% pyridine to prevent aggregation). Black lines show the fitted curves corresponding to the parameters listed in Table S1, and blue lines are instrument response functions.

Quantum Mechanical Calculations

The Gaussian 03 program suite ${ }^{[2]}$ was used for the quantum mechanical calculations. The five lowest electronic transitions of a linear, planar and a circular, butadiyne linked, porphyrin hexamer, similar to $\mathbf{1 a} / \mathbf{b}$ and $\mathbf{4}$ but without any substituents on the porphyrins, were computed using Time Dependent Density Functional Theory (TDDFT) with the B3LYP functional ${ }^{[3-5]}$ and the $6-31 \mathrm{G}(\mathrm{d})$ basis set. ${ }^{[6]}$ The structures were geometry optimized with PM3 prior to the TD-DFT calculation.

Table S2. Wavelength, λ, and oscillator strengths, f, of the five lowest electronic transitions of a linear (4) and a cyclic porphyrin hexamer (1) computed from TD-DFT calculations.

	Linear Hexamer		Cyclic Hexamer	
Transition	$\lambda(\mathrm{nm})$	f	$\lambda(\mathrm{~nm})$	f
$\mathbf{1}$	881	6.94	987	0
$\mathbf{2}$	762	0.00	765	2.99
$\mathbf{3}$	745	0.00	765	2.99
$\mathbf{4}$	692	0.97	761	0.0629
$\mathbf{5}$	683	0.0091	761	0.0629

(a)

(b)

(c)

(d)

(e)

(f)

Figure S2. Molecular orbital representations of 1 calculated by DFT for (a) HOMO, (b) LUMO, (c) HOMO-1, (d) LUMO+1, (e) HOMO-2, and (f) LUMO+2.

Synthetic Procedures

All reagents were purchased from commercial sources. Manipulation of all air and/or water sensitive compounds was carried out using standard high vacuum techniques. Porphyrins, 2a/b, $\mathbf{7}$ and $\mathbf{8}$ were synthesized by adapting a published procedure. ${ }^{[7]}$

Column chromatography was carried out on Merck ${ }^{\circledR}$ silica gel 60 using a positive pressure of nitrogen. Where mixtures of solvents were used, ratios reported are by volume.
UV-visible spectra were recorded on a Perkin-Elmer Lambda 20 spectrometer. NMR spectra were recorded on Bruker instruments, DPX-400 or AV II-500 with cryoprobe. Chemical shifts are quoted as parts per million (ppm) relative to tetramethylsilane and coupling constants (J) are quoted in Hertz (Hz). MALDI-TOF mass spectra were acquired by the EPSRC Mass Spectrometry Service, Swansea, UK. Computational chemistry was carried out using the MM+ force-field in HyperChem ${ }^{\text {TM }}$, Hypercube Inc. A correction factor of 4% was applied to compensate the underestimation of distances obtained by the molecular mechanics method. This correction factor was determined by comparison with X-ray crystal date for a range of closely related structures. UV-visible spectra were analyzed by fitting the experimental data to the theoretically expected curve using Origin ${ }^{\mathrm{TM}}$ or SPECFIT ${ }^{\mathrm{TM}}$ software. $^{\text {S }}$.

Scheme S1. Synthesis of linear porphyrin hexamer 4.

THS_{2}-Porphyrin Trimer (9)

Porphyrin monomer 7 ($128 \mathrm{mg}, 93.7 \mu \mathrm{~mol}$) and porphyrin dimer $8(230 \mathrm{mg}, 93.7 \mu \mathrm{~mol})$ were dissolved in dry dichloromethane (73 mL). The mixture was vigorously stirred in a flame dried flask equipped with a CaCl_{2} drying tube for 25 min . Copper(I) chloride ($556 \mathrm{mg}, 5.62$ mmol) and N, N, N ', N '-tetramethylethylenediamine ($650 \mu \mathrm{~L}, 5.62 \mathrm{mmol}$) were added and vigorous stirring was continued for 1 hour. The reaction mixture was filtered over a short plug of silica using dichloromethane and solvents were removed under vacuum. Size exclusion chromatography on Biobeads SX-1 using tetrahydrofuran gave the trimer as a brown solid (109 mg, 30\%); porphyrin dimer (20\%) and porphyrin tetramer (20\%) were isolated as byproducts.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3} / 1 \% d_{5}$-pyridine): $\delta_{\mathrm{H}} 9.89-9.87(\mathrm{~m}, 8 \mathrm{H}), 9.65(\mathrm{~d}, \mathrm{~J}=4.5 \mathrm{~Hz}, 4 \mathrm{H}$), 9.08-9.07 (m, 8H), $8.97(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.42(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.39(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 8 \mathrm{H})$, 6.94-6.91 (m, 6H), 4.21-4.16 (m, 24H), 1.94-1.87 (m, 24H), 1.81-1.75 (m, 12H), 1.58-1.50 $(\mathrm{m}, 36 \mathrm{H}), 1.45-1.29(\mathrm{~m}, 120 \mathrm{H}), 1.06-1.01(\mathrm{~m}, 12 \mathrm{H}), 0.94-0.86(\mathrm{~m}, 54 \mathrm{H})$. UV-Vis $\left(\mathrm{CHCl}_{3} / 1 \%\right.$ Pyridine): $\lambda_{\max }(\varepsilon) 462 \mathrm{~nm}\left(5.3 \times 10^{5}\right), 500 \mathrm{~nm}\left(2.5 \times 10^{5}\right), 590 \mathrm{~nm}\left(3.3 \times 10^{5}\right), 755 \mathrm{~nm}(1.9 \times$ 10^{5}).

THS-Porphyrin Trimer (10)

Tetrabutylammonium fluoride $(1.0 \mathrm{M}$ in THF, $39.0 \mu \mathrm{~L}, 39.0 \mu \mathrm{~mol})$ was added to a deoxygenated solution of porphyrin trimer $9(100 \mathrm{mg}, 26.2 \mu \mathrm{~mol})$ in dichloromethane (2.3
mL) and chloroform (2.3 mL). The progress of the reaction was followed by TLC (15% pyridine in petrol 40-60 as eluent). The reaction was quenched with acetic acid ($40 \mu \mathrm{~L}, 700$ $\mu \mathrm{mol}$) and passed through a short plug of silica using dichloromethane. Chromatography on flash silica gel using 15% pyridine / petrol 40-60 as eluent afforded the desired product as brown solid ($36.1 \mathrm{mg}, 39 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3} / 1 \% d_{5}$-pyridine): $\delta_{\mathrm{H}} 9.90-9.86(\mathrm{~m}, 8 \mathrm{H}), 9.66-9.63(\mathrm{~m}, 4 \mathrm{H}), 9.08-$ $9.06(\mathrm{~m}, 8 \mathrm{H}), 8.99-8.96(\mathrm{~m}, 4 \mathrm{H}), 7.41-7.37$ (12H), 6.93-6.91 (m, 6H), 4.20-4.15 (m, 24H), $1.94-1.86(\mathrm{~m}, 24 \mathrm{H}), 1.82-1.74(\mathrm{~m}, 6 \mathrm{H}), 1.59-1.49(\mathrm{~m}, 30 \mathrm{H}), 1.44-1.28(\mathrm{~m}, 108 \mathrm{H}), 1.05-1.00$ (m, 6H), 0.93-0.83 (m, 45H). MALDI-TOF MS+: m/z 3539 ($\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{222} \mathrm{H}_{286} \mathrm{~N}_{12} \mathrm{O}_{12} \mathrm{SiZn}_{3}$, requires 3539);

THS_{2}-Porphyrin Hexamer (4)

Porphyrin trimer $\mathbf{1 0}(30.0 \mathrm{mg}, 8.48 \mu \mathrm{~mol})$ was dissolved in dry dichloromethane (5.2 mL). The mixture was vigorously stirred in a flame dried flask equipped with a CaCl_{2} drying tube for 15 min . Copper(I) chloride $(25.2 \mathrm{mg}, \quad 254 \quad \mu \mathrm{~mol})$ and N, N, N, N tetramethylethylenediamine ($29 \mu \mathrm{~L}, 254 \mu \mathrm{~mol}$) were added and vigorous stirring was continued for 2.5 hours. The reaction mixture was filtered over a short plug of silica using dichloromethane and solvents were removed under vacuum. Size exclusion chromatography on Biobeads SX-1 using tetrahydrofuran gave porphyrin hexamer as a brown solid (24.3 mg , 81\%).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3} / 1 \% \mathrm{~d}_{5}$-pyridine): $\delta_{\mathrm{H}} 9.91-9.87(\mathrm{~m}, 20 \mathrm{H}), 9.65(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 4 \mathrm{H}$), 9.10-9.07 (m, 20H), 8.97 (d, $J=4.5 \mathrm{~Hz}, 4 \mathrm{H}$), 7.44-7.42 (m, 16H), 7.39-7.38 (m, 8H), 6.95$6.94(\mathrm{~m}, 8 \mathrm{H}), 6.92-6.91(\mathrm{~m}, 4 \mathrm{H}), 4.20-4.16(\mathrm{~m}, 48 \mathrm{H}), 1.94-1.89(\mathrm{~m}, 60 \mathrm{H}), 1.81-1.75(\mathrm{~m}$, 12H), 1.58-1.50 (m, 72H), 1.42-1.26 (m, 192H), 1.05-1.01 (m, 12H), 0.94-0.86 (m, 90H). MALDI-TOF MS+: $m / z 7076\left([\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{444} \mathrm{H}_{570} \mathrm{~N}_{24} \mathrm{O}_{24} \mathrm{Si}_{2} \mathrm{Zn}_{6}\right.$, requires 7076); $\lambda_{\text {max }}(\varepsilon)$ in $\mathrm{CHCl}_{3}: 439 \mathrm{~nm}\left(2.2 \times 10^{5}\right), 519 \mathrm{~nm}\left(3.6 \times 10^{5}\right), 813 \mathrm{~nm}\left(3.6 \times 10^{5}\right)$; $\lambda_{\text {max }}(\varepsilon)$ in Toluene/ 1% Pyridine: $466 \mathrm{~nm}\left(5.7 \times 10^{5}\right), 804 \mathrm{~nm}\left(2.9 \times 10^{5}\right)$.

Hexadentate Template (3)

To a solution of hexa-(4-bromophenyl)benzene ${ }^{[8]}$ ($300.0 \mathrm{mg}, 297 \mu \mathrm{~mol}$) in dimethyleneglycol (9 mL) and tetrahydrofuran (21 mL) was added dichlorobis(triphenylphosphine)-palladium(II) ($40.0 \mathrm{mg}, 57.0 \mu \mathrm{~mol}$). After addition of water (12 mL), $\mathrm{NaHCO}_{3}(450 \mathrm{mg}, 5.36 \mathrm{mmol})$ and $4-$ pyridineboronic acid ($882 \mathrm{mg}, 7.18 \mathrm{mmol}$), the mixture was deoxygenated and stirred at 70 ${ }^{\circ} \mathrm{C}$ for 5 days. Solvents were removed and the crude product was purified by column chromatography on flash silica gel (dichloromethane : methanol : triethylamine $=10: 1:$ 0.05) to give the template as a white solid ($148 \mathrm{mg}, 50 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 8.36$ (d, $J=5.5 \mathrm{~Hz}, 12 \mathrm{H}$), 7.29 (d, $J=5.5 \mathrm{~Hz}, 12 \mathrm{H}$), 7.18 (d, J $=8.5 \mathrm{~Hz}, 12 \mathrm{H}), 6.96(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 149.17,147.99$, 141.04, 139.85, 134.54, 131.86, 125.37, 121.26. MALDI-TOF MS+: m/z 997.4 ([M+H] ${ }^{+}$, $\mathrm{C}_{72} \mathrm{H}_{48} \mathrm{~N}_{6}$, requires 997.4); UV-vis $\left(\mathrm{CHCl}_{3}\right)$: $\lambda_{\text {max }}(\varepsilon) 278 \mathrm{~nm}\left(1.1 \times 10^{5}\right)$.

Cyclic ${ }^{t} \mathrm{Bu}$-Hexamer • Hexadentate Template (1a-3)

Hexadentate-template $\mathbf{3}(5.4 \mathrm{mg}, 5.4 \mu \mathrm{~mol})$ and diethynyl porphyrin dimer $\mathbf{2 a}(27.0 \mathrm{mg}, 16.9$ $\mu \mathrm{mol}$) were dissolved in dichloromethane (1 mL) and solvents were removed. A catalyst solution was prepared by dissolving dichlorobis(triphenylphosphine)-palladium(II) 8.2 mg , $12 \mu \mathrm{~mol}$), copper(I) iodide ($4.2 \mathrm{mg}, 22 \mu \mathrm{~mol}$) and iodine ($24 \mathrm{mg}, 95 \mu \mathrm{~mol}$) in toluene (12.5 mL) and diisopropylamine (0.9 mL). Part of this catalyst solution (8.8 mL) was added to the dry residue of hexadentate template and porphyrin dimer. The reaction mixture was stirred vigorously at $60^{\circ} \mathrm{C}$ under air. UV-Vis spectroscopy showed the reaction to be complete after 1.5 hours. The mixture was diluted with dichloromethane (20 mL), and washed with a saturated aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution ($2 \times 40 \mathrm{~mL}$) and water (60 mL). Solvents were removed under vacuum. The residue was redissolved in tetrahydrofuran (2 mL) and passed through a $0.45 \mu \mathrm{~m}$ membrane filter. Preparative size exclusion chromatography on Biobeads SX-1 in tetrahydrofuran afforded the hexamer nanoring $\mathbf{1 a} \cdot \mathbf{3}$ as a brownish-red solid (13.7 mg , 44\%).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 9.59(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 24 \mathrm{H}), 8.81(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 24 \mathrm{H}), 8.05$ (s, $12 \mathrm{H}), 7.86$ (s, 12H), 7.81 (s, 12H), 5.52 (d, $J=9.0 \mathrm{~Hz}, 12 \mathrm{H}$), 5.48 (d, $J=9.0 \mathrm{~Hz}, 12 \mathrm{H}), 5.00$ (d, $J=7.0 \mathrm{~Hz}, 12 \mathrm{H}$), 2.33 (d, $J=7.0 \mathrm{~Hz}, 12 \mathrm{H}$), 1.58 (s, 108H), 1.54 (s, 108H). ${ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 151.33,150.04,148.95,148.31,146.19,142.91,141.18,139.88,138.66$,
$132.84,132.07,130.35,129.46,125.31,123.77,120.92,119.04,99.94,96.50,89.32$, 35.05, 34.97, 31.79, 31.70. MALDI-TOF MS+: $m / z 5775.4\left([M]^{\bullet+}, \mathrm{C}_{384} \mathrm{H}_{348} \mathrm{~N}_{30} \mathrm{Zn}_{6}\right.$, requires 5775.4); UV-vis $\left(\mathrm{CHCl}_{3}\right): \lambda_{\max }(\varepsilon) 483\left(4.8 \times 10^{5}\right), 774\left(3.2 \times 10^{5}\right), 810\left(4.1 \times 10^{5}\right), 852(3.3 \times$ 10^{5}).

Cyclic ${ }^{t} \mathrm{Bu}$-Hexamer (1a)

Cyclic hexamer • template complex 1a.3 ($3.7 \mathrm{mg}, 0.64 \mu \mathrm{~mol}$) was passed through a size exclusion column (Biobeads SX-1) containing a ($100 \mathrm{mg} \mathrm{mL}^{-1}$) solution of DABCO in THF. The crude product mix was dissolved in chloroform and recrystallized by layer addition with methanol. The precipitate was isolated by passing the mix through a 200 nm membrane filter to afford the template-free nanoring as a brownish solid ($2.5 \mathrm{mg}, 81 \%$). MALDI-TOF MS+: $m / z 4778\left([\mathrm{M}]^{\bullet+}, \mathrm{C}_{312} \mathrm{H}_{300} \mathrm{~N}_{24} \mathrm{Zn}_{6}\right.$, requires 4778); UV-vis $\left(\mathrm{CHCl}_{3}\right)$: $\lambda_{\max }(\varepsilon) 475(4.3 \times$ 10^{5}), $788\left(2.3 \times 10^{5}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 9.62(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 24 \mathrm{H}) 8.79(\mathrm{~d}, J=$ $4.5 \mathrm{~Hz}, 24 \mathrm{H}) 7.90(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 24 \mathrm{H}) 7.75(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 12 \mathrm{H}) 1.49(\mathrm{~s}, 216 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 151.93,150.06,148.51,141.26,133.15,130.41,129.58,125.07$, $120.85,100.36,94.75,88.38,34.96,31.69$.

Cyclic Octyloxy-Hexamer • Hexadentate Template (1b-3)

Hexadentate-template $\mathbf{3}(2.55 \mathrm{mg}, 2.54 \mu \mathrm{~mol})$ and diethynyl porphyrin dimer $\mathbf{2 b}(16.6 \mathrm{mg}$, $7.64 \mu \mathrm{~mol}$) were dissolved in dichloromethane (1 mL) and solvents were removed. A catalyst solution was prepared by dissolving dichlorobis(triphenylphosphine)-palladium(II) (8.2 mg , $12 \mu \mathrm{~mol}$), copper(I) iodide ($4.2 \mathrm{mg}, 22 \mu \mathrm{~mol}$) and iodine ($24 \mathrm{mg}, 95 \mu \mathrm{~mol}$) in toluene (12.5 mL) and diisopropylamine (0.9 mL). Part of this catalyst solution (3.8 mL) was added to the dry residue of hexadentate template and porphyrin dimer. The reaction mixture was stirred vigorously at $60{ }^{\circ} \mathrm{C}$ under air for 2 hours. UV-Vis spectroscopy showed the reaction to be complete. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, and washed with $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ aq. and water. Solvents were removed under vacuum. The mixture was redissolved in THF (2 mL) and passed through a $0.45 \mu \mathrm{~m}$ membrane filter. Preparative size exclusion chromatography on Biobeads SX-1 in tetrahydrofuran afforded the nanoring $\mathbf{1 b} \mathbf{3}$ as a brownish-red solid ($6.3 \mathrm{mg}, 33 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.54(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 24 \mathrm{H}), 8.85(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 24 \mathrm{H}), 7.38(\mathrm{~s}$, $12 \mathrm{H}), 7.11(\mathrm{~s}, 12 \mathrm{H}), 6.89(\mathrm{~s}, 12 \mathrm{H}), 5.55(\mathrm{~d}, ~ J=8.5 \mathrm{~Hz}, 12 \mathrm{H}), 5.47(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 12 \mathrm{H}), 5.00$ (d, $J=6.5 \mathrm{~Hz}, 12 \mathrm{H}), 4.20(\mathrm{t}, J=6.5 \mathrm{~Hz}, 24 \mathrm{H}), 4.09(\mathrm{t}, J=6.5 \mathrm{~Hz}, 24 \mathrm{H}), 2.26(\mathrm{~d}, J=6.5 \mathrm{~Hz}$, 12H), 1.94-1.83 (m, 48H), 1.56-1.26 (m, 240H), 0.90-0.85 (m, 72H). MALDI-TOF MS+: m/z $7507.5\left([\mathrm{M}]^{\bullet+}, \mathrm{C}_{480} \mathrm{H}_{540} \mathrm{~N}_{30} \mathrm{O}_{24} \mathrm{Zn}_{6}\right.$, requires 7506.0); UV-vis $\left(\mathrm{CHCl}_{3}\right): \lambda_{\max }(\varepsilon) 486(4.0 \times$ $\left.10^{5}\right), 765\left(2.4 \times 10^{5}\right), 800\left(3.2 \times 10^{5}\right), 841\left(2.8 \times 10^{5}\right)$.

Cyclic Octyloxy-Hexamer (1b)

Cyclic hexamer • template $\mathbf{1 b} .3(2.7 \mathrm{mg}, 0.36 \mu \mathrm{~mol})$ was passed through a size exclusion column (Biobeads SX-1) containing a ($40 \mathrm{mg} \mathrm{mL}^{-1}$) solution of DABCO in toluene. The crude product mix was dissolved in chloroform and recrystallized by layer addition with methanol. The precipitate was isolated by passing the mix trough a 200 nm membranefilter to afford the template-free nanoring as a brownish solid ($2.1 \mathrm{mg}, 89 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.59(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 24 \mathrm{H}), 8.87(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 24 \mathrm{H}), 7.22$ (s, $24 \mathrm{H}), 6.84(\mathrm{~s}, 12 \mathrm{H}), 4.08(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 48 \mathrm{H}), 1.94-1.83(\mathrm{~m}, 48 \mathrm{H}), 1.56-1.26(\mathrm{~m}, 240 \mathrm{H})$, 0.90-0.85 (m, 72H). UV-vis $\left(\mathrm{CHCl}_{3}\right): \lambda_{\max }(\varepsilon) 473\left(4.3 \times 10^{5}\right), 783\left(2.3 \times 10^{5}\right)$.

Figure S3. ${ }^{1} \mathrm{H}^{1}{ }^{1} \mathrm{H}$ COSY spectrum of cyclic hexamer•template, $\mathbf{1 a} \cdot \mathbf{3}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S4. ${ }^{1} \mathrm{H}^{-13} \mathrm{C}$ HSQC spectrum of cyclic hexamer•template, $\mathbf{1 a} \cdot \mathbf{3}\left(500 \mathrm{MHz}, 125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S5. MALDI-TOF mass spectrum of cyclic hexamer•template, $\mathbf{1 a \cdot 3}$ (matrix: DCTB, mode: pos. refl.). Expansion insert: Theoretical and observed isotope pattern.

Figure S6. MALDI-TOF mass spectrum of cyclic hexamer, 1a (matrix: DCTB, mode: pos. linear). Expansion insert: Theoretical and observed isotope pattern.

Figure S7. (a) UV-vis titration of hexadentate template, 3 to 10,20-bis-ethynyl-5,15-bis-octyloxy-zincporphyrin dimer, $\mathbf{2 b}$, (conc. $8.9 \mu \mathrm{M}, 298 \mathrm{~K}, \mathrm{CHCl}_{3}$). Arrows indicate areas of increasing and decreasing absorption during the titration. (b) The strong binding event gives the correct stoichiometry (3:1) for the complex $\mathbf{2 b}_{\mathbf{3}} \cdot \mathbf{3}$. (c) The binding data at 725 nm were fitted to a $3: 1$ binding isotherm to give a binding constant of $K_{\mathrm{f}}=1.6 \pm 0.1 \times 10^{8} \mathrm{M}^{-1}$, assuming that the three molecules of $\mathbf{2 b}$ bind independently.

Figure S8. (a) UV-vis titration of hexadentate-template, $\mathbf{3}$ with linear porphyrin hexamer, $\mathbf{4}$ ([4] = 2.6 $\mu \mathrm{M}, 298 \mathrm{~K}, \mathrm{CHCl}_{3}$). (b) Binding isotherm obtained from the absorbance data at 500 nm . The strong binding event gives the correct stoichiometry (1:1) for the complex 4.3. Arrows indicate areas of increasing and decreasing absorption during the titration.

Figure S9. Vis/NIR titration spectra and binding curves for $\mathbf{4 . 3}+$ pyridine (a and b), and $\mathbf{1 b} \cdot \mathbf{3}+$ quinuclidine (c and d), in CHCl_{3} at 298 K (A is absorption; θ is $\%$ fraction bound; $[\mathbf{4} \cdot \mathbf{3}]=1.8 \mu \mathrm{M}$; $[\mathbf{1 b} \cdot \mathbf{3}]$ $=1.2 \mu \mathrm{M}) \circ$: data at b) 878 nm and d) $850 \mathrm{~nm} ;-$ calculated curve (Equations S1-S5). Arrows indicate areas of increasing and decreasing absorption during the titration.

Calculation of Equilibrium Constants

The curves in Figure S9 (b) and (d) were fitted with the following equations S1-S5, where M is either $\mathbf{1 b}$ or $\mathbf{4}, \mathbf{T}$ is hexadentate template $\mathbf{3}$, and \mathbf{L} is either quinuclidine or pyridine.

$$
\begin{align*}
& K_{\mathrm{b}}=\left(\left[\mathbf{M} \cdot \mathbf{L}_{6}\right][\mathbf{T}]\right) /\left([\mathbf{M} \cdot \mathbf{T}][\mathbf{L}]^{6}\right) \tag{S1}\\
& {[\mathbf{M}]_{0}=[\mathbf{M} \cdot \mathbf{T}]+\left[\mathbf{M} \cdot \mathbf{L}_{6}\right]} \tag{S2}\\
& {[\mathbf{L}]_{0}=[\mathbf{L}]} \tag{S3}\\
& {[\mathbf{T}]=[\mathbf{M} \cdot \mathbf{L} 6]} \tag{S4}\\
& K_{\mathrm{b}}[\mathbf{M} \cdot \mathbf{T}][\mathbf{L}]_{0}{ }^{6}-\left([\mathbf{M}]_{O}-[\mathbf{M} \cdot \mathbf{T}]\right)^{2}=0 \tag{S5}
\end{align*}
$$

Equilibrium constants K_{f} as occurring for the formation of $\mathbf{1 b} \mathbf{3}$ and $\mathbf{4 . 3}$ were evaluated by measuring how easily a competing ligand displaces the template (K_{b}), as shown by a thermodynamic cycle described in Equation S6. K_{L} is the binding constant of the competing ligand (quinuclidine or pyridine) for one zinc center of the porphyrin hexamer.

$$
\begin{equation*}
K_{\mathrm{f}}=K_{\mathrm{L}}{ }^{6} / K_{\mathrm{b}} \tag{S6}
\end{equation*}
$$

Scheme S2. Binding of 10,20-bis-tritrihexylsilanylethynyl-5,15-bis-octyloxy-zinc-porphyrin with quinuclidine, $\mathbf{G u}$.

(b)

Figure S1O. (a) UV-vis titration of quinuclidine, $\mathbf{G u}$ with 10,20-bis-trihexylsilylethynyl-5,15-bis-octyloxy-zinc-porphyrin, (conc. $1.7 \mu \mathrm{M}, 298 \mathrm{~K}, \mathrm{CHCl}_{3}$). The data at 645 and 619 nm were fitted to a $1: 1$ binding isotherm (b) to give a binding constant of $K_{\mathrm{Gu}}=1.2 \pm 0.1 \times 10^{6} \mathrm{M}^{-1}$. Arrows indicate areas of increasing and decreasing absorption during the titration.

Scheme S3. Binding of 10,20-bis-trihexylsilanylethynyl-5,15-bis-octyloxy-zinc-porphyrin with 4-phenyl-pyridine, PhPy.

Figure S11. (a) UV-vis titration of 4-phenylpyridine, PhPy with 10,20-bis-trihexylsilylethynyl-5, 15-bis-octyloxy-zinc-porphyrin, (conc. $2.2 \mu \mathrm{M}, 298 \mathrm{~K}, \mathrm{CHCl}_{3}$). The data at 644 and 619 nm were fitted to a $1: 1$ binding isotherm. (b) to give a binding constant of $K_{0}=2.3 \pm 0.2 \times 10^{4} \mathrm{M}^{-1}$. Arrows indicate areas of increasing and decreasing absorption during the titration.

Scheme S4. Binding of 10,20-bis-trihexylsilanylethynyl-5,15-bis-octyloxy-zinc-porphyrin with pyridine, Py.

Figure S12. (a) UV-vis titration of pyridine, Py with 10,20-bis-trihexylsilylethynyl-5, 15-bis-octyloxy-zinc-porphyrin, (conc. $19 \mu \mathrm{M}, 298 \mathrm{~K}, \mathrm{CHCl}_{3}$). The data at 644 and 619 nm were fitted to a $1: 1$ binding isotherm. (b) to give a binding constant of $K_{\mathrm{Py}}=1.8 \pm 0.2 \times 10^{4} \mathrm{M}^{-1}$. Arrows indicate areas of increasing and decreasing absorption during the titration.

References:

[1] M. U. Winters, J. Kärnbratt, M. Eng, C. J. Wilson, H. L. Anderson, B. Albinsson, J. Phys. Chem. C, 2007, 111, 7192-7199.
[2] M. J. Frisch, Gaussian 03, Revision B.05; Gaussian, Inc.: Pittsburgh PA. 2003.
[3] A. D. Becke, J. Chem. Phys. 1993. 98, 5648-5652.
[4] C. Lee, W. Yang, R. G. Parr, Phys. Rev. B. 1988. 37, 785-789.
[5] S. H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 1980. 58, 1200-1211.
[6] R. Ditchfield, W. J. Hehre, J. A. Pople, J. Chem. Phys. 1971, 54, 724-728.
[7] M. U. Winters, E. Dahlstedt, H. E. Blades, C. J. Wilson, M. J. Frampton, H. L. Anderson, B. Albinsson, J. Am. Chem. Soc. 2007, 129, 4291-4297.
[8] R. Rathore, C. L. Burns, M. I. Deselnicu, Org. Lett. 2001, 3, 2887-2890.

