Ultrafast Transient Terahertz Conductivity of Monolayer MoS$_2$ and WSe$_2$ Grown by Chemical Vapor Deposition

Callum J. Docherty, Patrick Parkinson, Hannah J. Joyce, Ming-Hui Chiu, Chang-Hsiao Chen, Ming-Yang Lee, Lain-Jong Li, Laura M. Herz, and Michael B. Johnston

ABSTRACT

We have measured ultrafast charge carrier dynamics in monolayers and trilayers of the transition metal dichalcogenides MoS$_2$ and WSe$_2$ using a combination of time-resolved photoluminescence and terahertz spectroscopy. We recorded a photoconductivity and photoluminescence response time of just 350 fs from CVD-grown monolayer MoS$_2$, and 1 ps from trilayer MoS$_2$ and monolayer WSe$_2$. Our results indicate the potential of these materials as high-speed optoelectronic materials.

KEYWORDS: transition metal dichalcogenide · CVD · molybdenum disulfide · tungsten diselenide · ultrafast · terahertz conductivity · photoluminescence

For the past three decades, technological advances toward terahertz speed electronic and optoelectronic devices have relied on the staple materials of low-temperature grown gallium arsenide (LT-GaAs) and ion implanted semiconductors. The combination of high initial mobility and rapid charge lifetimes required for ultrafast devices is achieved in these materials by introducing trapping sites into the bulk material. The emergence of new two-dimensional materials, however, offers the prospect of novel, cheap materials for high speed applications, without the need for difficult ion implantation procedures.

Transition metal dichalcogenides (TMDs) consist of transition metal atoms covalently bonded to chalcogens (S, Se or Te) to form atomic trilayers. The trilayers stack via weak van der Waals interactions to form a 3-dimensional solid. TMDs have the potential to become the building blocks of a wide range of future electronic devices as they act as semiconductors, semimetals or metals depending on the choice of transition metal. Molybdenum disulfide (MoS$_2$) and tungsten diselenide (WSe$_2$) are semiconducting TMDs that have been well studied in their multilayer (3D) form. MoS$_2$ is extensively used in industry as a dry lubricant and as a catalyst for the hydrodesulphurisation of petroleum. Only recently has truly monolayer (2D) MoS$_2$ been experimentally realized, exposing a wealth of new photophysics. For instance, while MoS$_2$ is an indirect bandgap semiconductor in the bulk (multilayer) form, it has a direct bandgap as a monolayer and thus exhibits greatly enhanced photoluminescence yield. Furthermore, negative trions, which are quasiparticles consisting of two electrons and a hole, have been discovered in monolayer MoS$_2$. As a result of these discoveries, MoS$_2$ is already showing promise for use in electronic and photonic devices, such as field effect transistors and memory applications. However, the observed low electron mobility in MoS$_2$ is problematic for the further development of...
these devices, particularly those that require high frequency operation. While the reason for low electron mobility in MoS₂ is a matter of debate, it is clear that a better understanding of the fundamental optical and electrical properties of TMDs is required in order to realize high performance devices.

The predominantly n-type nature of MoS₂ makes the development of electronic devices requiring p-type charge transport challenging. Another TMD, tungsten diselenide (WSe₂) offers a possible solution to this problem as it is an intrinsic semiconductor possessing ambipolar charge transport. WSe₂ shows many of the properties that make MoS₂ interesting, becoming a direct gap semiconductor in its monolayer form, and exhibiting trions. This, WSe₂ in its own right and layers of WSe₂ combined with MoS₂ show promise as key materials for future optoelectronic devices. However, to date there have been few studies on the photophysics of WSe₂.

Most studies and devices reported to date have utilized mechanically exfoliated MoS₂ and WSe₂, using the “scotch tape” method pioneered in early graphene research. Unfortunately this method of producing monolayers of layered materials is not well suited to large-scale industrial production. Recently, MoS₂ and WSe₂ have been produced using chemical vapor deposition (CVD). This bottom-up technique is compatible with current commercial production technologies and is also the method currently favored for the production of graphene.

Previous time-resolved photophysical studies of MoS₂ have utilized photoluminescence (PL) spectroscopy, electroluminescence, optical pump–probe spectroscopy, and transient absorption to investigate exciton dynamics in mechanically exfoliated few- and monolayer MoS₂. These studies generally observed a relaxation of photoexcited species on two distinct time scales: a fast, few picosecond decay followed by a slower component on the scale of several tens of picoseconds. However, these studies were not able to probe directly the conductive species that are of interest for optoelectronic devices. To our knowledge, no time-resolved studies of monolayer WSe₂ have so far been published.

Here, we present studies of monolayer and trilayer CVD-grown MoS₂ and WSe₂ using terahertz time domain spectroscopy (THz TDS) and PL spectroscopy. Together, these techniques allowed us to observe the behavior of free carriers and excitons in photoexcited MoS₂. We observed a photoconductivity response in CVD-grown MoS₂ of just 350 fs. Such an ultrafast response time is particularly promising for the future use of TMDs in high-speed (>1 THz) photodetectors, emitters and transistors. However, many challenges still remain to realize such devices, such as obtaining materials with very high charge carrier mobility. The possibility of tuning the conductivity lifetime in MoS₂ via substrate interactions and film thickness offers the option of producing cost-effective optoelectronic materials with tunable charge carrier lifetimes. Further measurements suggest the observation of trions in monolayer MoS₂ and WSe₂.

Sample Preparation and Characterization. Predominantly monolayer MoS₂, trilayer MoS₂, and monolayer WSe₂ films were grown directly onto sapphire substrates by chemical vapor deposition. More detail about the growth methodologies may be found in refs 42–44 and in the Methods section.

The number of layers in each sample was determined by Raman spectroscopy and atomic force microscopy (AFM). Figure 1 (b) and (f) show the Raman spectra of the monolayer and trilayer samples, respectively. The splitting between the E₁₃ and A₁₃ peaks in the Raman spectrum of the monolayer (trilayer) MoS₂ was 18 cm⁻¹ (23 cm⁻¹), which is indicative of single (trilayer) growth. The AFM images of intentionally scratched samples are presented in Figure 1 (c), (g), and (k). They show step heights of 0.7, 2.3 and 0.73 nm, which confirm that the samples consist of monolayer MoS₂, trilayer MoS₂, and monolayer WSe₂, respectively. Figure 1 (d) and Figure 1 (h) show the optical transmission spectra of monolayer and trilayer MoS₂, respectively. The two absorption features at 1.89 and 2.04 eV are characteristic of MoS₂ and are known as the “A” and “B” excitons. Similarly, the features at 1.65 and 2.06 eV of Figure 1 (f) correspond to the “A” and “B” excitons of WSe₂.

Electron double layer transistors (EDLTs) were fabricated to assess the sheet charge carrier density in the layers. The MoS₂ layers were found to be predominately n-type, while the WSe₂ layers were found to be ambipolar (see Supporting Information Figures S1 and S2).

RESULTS

We used a combination of photoluminescence (PL) and THz conductivity spectroscopy to observe the dynamics of photoexcited charge species in the samples. Here we use the term “charge species” to refer to free electrons and holes as well as correlation between charges such as excitons, charged excitons (trions) and plasmons. PL is sensitive only to the subset of photo-injected charge species that recombine radiatively. In contrast THz conductivity spectroscopy is sensitive to any conductive or polarizable charge species independent of whether the excitation relaxes radiatively or nonradiatively. Furthermore, THz spectra can be used to identify types of charge species and how they evolve on picosecond time scales. For example excitons, plasmons and free charges have distinct spectral signatures at THz frequencies. Therefore, together time-resolved PL and THz spectroscopy allow complicated charge dynamics involving more than one type of charge species to be interpreted.

Figure 2a shows the photoluminescence recorded at 1.86 eV arising from monolayer MoS₂ as a function of time after photoexcitation with 3.0 eV photons. The energy of the absorbed photons are significantly
above the MoS₂ bandgap and hence should photo-inject electron–hole pairs with significant kinetic energy (i.e., "hot" carriers). Overlaid on this graph is the THz photoconductivity $\Delta \sigma_{\text{THz}}(t)$ of the same sample as a function of time after photoexcitation with similar energy (3.1 eV) photons. The THz photoconductivity was found by measuring the change of transmission of the peak of the THz pulse through the sample after photoexcitation by a pump pulse.\(^5\) Note that only the amplitude of the signal changed as a function of time after photoexcitation, not the phase. The full photoconductivity spectrum is discussed later (see Figure 5). The pump fluence dependence of this photoexcitation is linear, as shown in the Supporting Information. Photoexcitation of the sample leads to a sharp (instrument response limited) rise in both THz photoconductivity and PL emission followed by an ultrashort 350 fs exponential decay of both signals. The exponential decays of the photoconductivity and PL signals suggest that monomolecular charge recombination dominates over bimolecular recombination of electron–hole pairs.\(^5\) The observed monomolecular recombination could result from exciton recombination, charge-carrier trapping or (if the system is doped) from recombination of minority charge carriers. After a few picoseconds the PL signal disappears; however, a significant persistent THz photoconductivity is still evident 10 ps after photoexcitation.

To understand more about the origin of the persistent photoconductivity in monolayer MoS₂ we also resonantly photoexcited the "A" and "B" excitons and recorded the THz conductivity and PL dynamics. Figure 2b shows that upon resonant photoexcitation the early time PL and $\sigma_{\text{THz}}(t)$ dynamics are remarkably similar to the case of above-bandgap photoexcitation. At later times (<3 ps) however the persistent photoconductivity signal is far less pronounced than for the nonresonant case and the PL is quenched even more effectively. There are a number of possible explanations for these observations. Nonresonant excitation may for example photoinject charge carriers to indirect-gap side valleys, leading to quenched PL but persistent conductivity. Alternatively, nonresonant excitation may lead to an increased probability of forming dark excitons via intersystem crossing, which would have a THz photoconductivity response without emitting PL.

Together, these results indicate that there is a rapid quenching of both PL and photoconductivity in
monolayer MoS₂ within 350 fs photoexcitation. This quenching is independent of whether excitons are created resonantly or a hot electron–hole population is photoinjected into the sample. The fast quenching may be a result of (i) fast surface trapping, (ii) surface–substrate interactions for monolayer MoS₂ and/or (iii) extrinsic charge carrier mediated recombination.

To gain insight into the contribution of extrinsic charge carriers to the recombinant dynamics, we compare the density of injected electron–hole pairs in our photoconductivity experiments with the areal concentration of extrinsic charge carriers (i.e., doping level) in our MoS₂ monolayers. EDLTS fabricated from the MoS₂ monolayers were found to be n-type with sheet electron density of 2–3 × 10¹² cm⁻² (Supporting Information Figure S1). In comparison, the maximum absorbed photon fluences in our photoconductivity experiments were significantly higher (7–12 × 10¹³ cm⁻²). The exponential decay rate of photoconductivity quenching was found to be invariant as the absorbed fluence was lowered. Such invariance is expected for either trap or extrinsic carrier dominated quenching only under the condition that the absorbed flux is significantly smaller than the areal trap or doping density. Thus, we speculate that the recombination dynamics are probably dominated by an areal trap density higher than 12 × 10¹³ cm⁻².

Time resolved photocurrent measurements were also performed on monolayer WSe₂, which as found to be ambipolar (Supporting Information Figure S1). In nanoscale materials the in

Figure 3. Normalized photodynamics of monolayer WSe₂ measured by optical pump–THz probe spectroscopy. The blue crosses show the THz photoconductivity of WSe₂, ∆σ/σ₀, as a function of time after photoexcitation by 35 fs pulses of above-gap photons with energy of 3.1 eV. The absorbed photon fluence was ∼4.2 × 10¹³ cm⁻²/pulse. The red squares show ∆σ/σ₀ of WSe₂ photoexcited resonantly with the "A" exciton at a photon energy of 1.65 eV. The fluence absorbed in the WSe₂ layer was ∼3.3 × 10¹³ cm⁻²/pulse. Solid lines are biexponential fits to the data.

The THz photoconductivity of WSe₂ is presented in Figure 3. Above gap photoexcitation was provided by a 3.1 eV pump beam, as for the MoS₂ measurements. For excitation resonant with the excitons in WSe₂, however, a lower energy pump of 1.65 eV was used, matching the lower energy of the "A" exciton in WSe₂ compared to that in MoS₂.

As was observed for MoS₂, upon photoexcitation of WSe₂ by either pump energy, the THz photoconductivity rises sharply, but with a slower rise time than for MoS₂ (∼700 fs compared to an instrument limited rise time of 350 fs in MoS₂). The photoconductivity then decays with a fast exponential lifetime of 1 ps followed by a slower fall over ∼15 ps. For both photoexcitation energies the time constants in WSe₂ are noticeably longer than those in monolayer MoS₂. A full understanding of the differences in rise and fall times between MoS₂ and WSe₂ is beyond the scope of this study, but these results provide a basis for future theoretical works.

In nanoscale materials the influence of surface trapping can be assessed by observing changes in transient photoconductivity as a function of the surface-area-to-volume ratio of the sample. We compared the photoconductivity dynamics of monolayer MoS₂ with the trilayer sample to gauge the importance of the surface-area-to-volume ratio on conductivity dynamics. As can be seen in Figure 4 and the exponential fit parameters displayed in Table S1 of the Supporting Information, the photoconductivity decays three times slower in the trilayer samples compared with the monolayer. It is notable that even in high-quality bulk crystals of MoS₂, DC photoconductivity measurements are dominated by surface trapping effects. Thus, for our CVD-grown monolayer samples we expect surface trapping to be the dominant mechanism of ultrafast PL and THz conductivity quenching.
Further information can also be gained from the complex THz photoconductivity spectrum, $\Delta\sigma(\omega)$. In Figure 5 we present the photoinduced THz conductivity for mono and trilayer MoS$_2$ taken at 1.5 ps after photoexcitation, and for monolayer WSe$_2$ at 1 ps after photoexcitation. All three samples appear to have a small free-carrier (Drude type) response combined with stronger Lorentzian resonances (see Supporting Information Table S2). This tends to suggest the presence of a small component of free charge carriers in addition to excitonic species. Trilayer MoS$_2$, however, exhibits noticeably different behavior to both monolayer MoS$_2$ and WSe$_2$. The photoconductivity of trilayer MoS$_2$ appears to show a resonance far beyond the bandwidth of the experiment, consistent with the behavior expected from excitons of binding energy \sim100 meV. In contrast, the monolayer samples show a resonance at \sim15 meV. The solid lines in Figure 5 represent potential models of these data, detailed in the Supporting Information.

Recently trions, quasiparticles consisting of two electrons and a hole or two holes and an electron, have been observed in PL spectra from MoS$_2$ and WSe$_2$ with binding energies of 18 and 24 meV, respectively. The similarity of these values to the monolayer resonance energies suggests the direct observation of trions in the monolayer samples. However, the signal-to-noise ratio in the spectrum is not high enough to draw firm conclusions.

CONCLUSION

In summary, we have observed ultrafast photoconductivity responses in monolayer MoS$_2$ and WSe$_2$, which we attribute to charge trapping at surface states. A monolayer semiconductor with such a fast response is likely to be a key component of future high-frequency optoelectronic devices including photoreceivers, emitters, modulators as well as microwave and THz switches. The low-cost and scalable CVD production of these monolayers, and their easy integration into devices, make them particularly attractive materials for such devices.

METHODS

Sample Preparation. Predominantly monolayer and trilayer MoS$_2$ films were grown directly onto sapphire substrates. Briefly, (0001)-oriented sapphire substrates (Tera Xtal technology Corp.) were cleaned with a H$_2$SO$_4$/H$_2$O$_2$ (70:30) solution at 100 °C for 1 h. For monolayer growth, the substrate was then placed at the center of a 2-in. tubular furnace on a quartz holder. Precursors of 0.3 g of MoO$_3$ (Sigma-Aldrich, 99.5%) in an Al$_2$O$_3$ crucible and 5 powder (Sigma-Aldrich, 99.5%) were placed at an upstream position in the reaction chamber. The furnace was first heated to 150 °C and annealed for 30 min with 70 sccm of Ar at 10 Torr, followed by heating at 650 °C for 10 min. The furnace was subsequently cooled slowly to room temperature.

Figure 4. Comparison of THz photoconductivity, $\Delta\sigma_{THz}$, in trilayer (green crosses) and monolayer (blue squares) MoS$_2$ as a function of time after photoexcitation by 175 μJ cm$^{-2}$ 35 fs pulses of 3.1 eV photons. The absorbed fluence of photons were \sim1.4 × 1014 cm$^{-2}$/pulse in the trilayer sample and \sim7 × 1014 cm$^{-2}$/pulse in the monolayer sample. Solid lines show biexponential fits to the data. Fit parameters are listed in Supporting Information Table 1. Additional reflections due to the thinness of the substrate have been removed from the trilayer data for clarity (see Supporting Information).

Figure 5. THz complex photoconductivity spectra, $\Delta\sigma(\nu)$. (a) Monolayer MoS$_2$, 1.5 ps after photoexcitation with 3 eV (squares) and 1.9 eV (crosses) photons. A low energy resonance at \sim18 meV (4.5 THz) is apparent. (b) Trilayer MoS$_2$, 1.5 ps after photoexcitation by 1.9 eV photons. (c) Monolayer WSe$_2$, 1 ps after photoexcitation on resonance with the WSe$_2$ “A” exciton at 1.65 eV. Solid lines show possible fits to the data, detailed in the Supporting Information.
Trilayers were grown by a two-step thermolysis of the precursor (NH₄)₂MoS₄. The sapphire substrate was immersed in a solution of the (NH₄)₂MoS₄ precursor dissolved in 20 mL of dimethylformamide. The substrate was slowly removed from the solution, leaving a thin (NH₄)₂MoS₄ film, and baked at 120 °C for 30 min. A two-step annealing process was performed to transform the precursor film to trilayer MoS₂.

Monolayer WSe₂ was prepared similarly on sapphire substrates. WO₃ powders (0.3 g) were heated to 925 °C at a ramping rate of 25 °C/min with Se powder in the furnace. The sapphire substrates were put at the downstream side, where the Se and WO₃ vapors were delivered by an Ar/H₂ flowing gas (Ar = 80 scm, H₂ = 20 scm, chamber pressure = 1 Torr). After reaching 925 °C, the heating zone was kept for 15 min, and the furnace was then naturally cooled to room temperature. Additional details about the growth methodologies may be found in refs 42–44.

Photoluminescence Spectroscopy. Photoluminescence measurements were carried out using an 80 MHz 100 fs pulsed Ti: sapphire excitation source. For all experiments the excitation fluence was set to 15 μJ/cm²/pulse. Time-resolved photoluminescence was measured using photoluminescence up-conversion spectroscopy as described in ref S8.

THz Spectroscopy. An optical pump THz-TDS probe spectrometer was used to measure the photocconductivity Δρ(ν, t) of MoS₂ and WSe₂ as a function of frequency ν and time t after photocreation. Details of the spectrometer and a description of how photocconductivity was extracted from the raw data has been described previously 55,59. Briefly, the spectrometer was driven by a Ti:sapphire laser amplifier, which generated 35 fs duration, 0.8 mJ pulses of 800 nm light at 5 kHz repetition rate. THz probe pulses were generated by optical rectification in a 2 mm thick (110)-GaP crystal and detected via electro-optic sampling in a 0.2 mm thick (110)-GaP crystal. A typical THz pulse can be seen in Supporting Information Figure S4. For the pump–probe measurements in Figures 2–4, the change in transmission due to photoexcitation of the peak of the THz electric field was measured, whereas for the photocconductivity spectra in Figure 5 the whole THz pulse was measured, with each part of the pulse measured at a fixed time after photocreation. 53 Samples were photoexcited by 35 fs laser pulses (typical fluence 175 μJ/cm²/pulse) at selected wavelengths using an optical parametric amplifier, or by frequency doubling pulses in a 0.2 mm-thick Type I BBO crystal. All measurements reported here were performed in a vacuum (<10⁻⁶ mbar) at room temperature.

Conflict of Interest: The authors declare no competing financial interest.

Acknowledgment. We would like to thank A. Prabakaran and N. Grobert for performing Raman mapping measurements on the samples after the THz measurements were completed. The authors would like to thank the EPSRC (UK), Academia Sinica (IAMS and Nano program) and National Science Council Taiwan (NSC-99-2112-M-001-021-MY3) for financial support.

Supporting Information Available: detailing the pump fluence and pump energy dependence of the THz spectroscopy measurements, as well as information above removing reflections from the trilayer THz photocconductivity. This material is available free of charge via the Internet at http://pubs.acs.org.

REFERENCES AND NOTES
