SUPPORTING INFORMATION

Unraveling the Function of an MgO Interlayer in Both Electrolyte and Solid-State SnO₂ Based Dye-Sensitized Solar Cells

Pablo Docampo,^a Priti Tiwana,^aNobuya Sakai,^b Hidetoshi Miura,^c Laura Herz,^a Takurou Murakami,^b Henry J. Snaith*^a

^a Clarendon Laboratory, University of Oxford, Oxford, OX1 3PU, United Kingdom

^bToin University of Yokohama,1614 Kurogane-cho, Aoba-ku Yokohama, 225-8503, Japan

^c Chemicrea Co Ltd, Tsukuba, Ibaraki 3050047, Japan

E-mail: <u>h.snaith1@physics.ox.ac.uk</u>

Supporting Information 1.Current voltage characteristics of solid-state TiO₂ devices, fabricated from commercially available nanoparticle paste and with the D102 dye, incorporating a thin MgO layer (blue squares) and no surface treatment (red triangles).

Supporting Information2. Absorption spectrum against wavelength for the films used in the solid-state devices incorporating a thin MgO layer (SnO2-MgO, red line) and films without a surface treatment (SnO2, black line).

Supporting Information3. Absorption spectrum against wavelength for mesoporous TiO_2 films of 1.5 μ m in thickness (black squares), sensitized with the D149 dye (red circles) and sensitized with the D102 dye (blue triangles).

Supporting information 4. Recombination lifetimes (τ_{REC}) extracted at short circuit conditions plotted against charge density for devices incorporating a thin MgO layer (SnO₂-MgO, blue squares) and devices with no surface treatment (SnO₂, red triangles). a) corresponds to devices fabricated with a liquid electrolyte and b) to devices fabricated with a solid-state hole transporter.

Supporting information 5.Voltage against capacitance plot of a device fabricated from dyesensitizing the compact layer used in the study.