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Supplementary Note 1: Vibronic anharmonicity and the strength of the Pseudo-Jahn−Teller effect

The strength of the pseudo-Jahn−Teller (PJT) effect differs considerably between CsSrBr3 and CsPbBr3, as we
demonstrate here. The energies of the two-level PJT problem with linear vibronic coupling (see Bersuker Section 4.1
for background and derivation)[1] can be written as:
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where Q is the nuclear distortion coordinate (Q = 0 in the high symmetry reference case, i.e. octahedral coordination),
K0 is the primary force constant in the absence of the vibronic interaction, F is the off-diagonal linear vibronic coupling
constant, and 2∆ is the energy separation between the electronic ground and (degenerate) excited states in the reference
case. The so-called “strong” case of the PJT effect, which produces a spontaneous distortion that breaks inversion
symmetry, occurs when ∆ < F 2/K0. Otherwise, in the so-called “weak” case, there is no spontaneous distortion,
but the effective force constant of the ungerade nuclear displacements in the ground state is nonetheless vibronically
softened by an amount F 2/∆ and vibronic anharmonicity is introduced (distinct from proper anharmonicity, see
Section 2.4 of Bersuker).[1] The magnitudes of these vibronic impacts on the ground state (softening of the quadratic
force constant, anharmonicity) take on a continuum of values in various systems. We designed the comparison between
CsPbBr3 and CsSrBr3 to test the influence of the vibronic anharmonicity on the lattice dynamics of halide perovskites
– despite both formally exhibiting the weak PJT effect, as we show below, the vibronic contributions are markedly
different in magnitude in these two systems, with CsPbBr3 lying much closer to a spontaneous acentric distortion.

To parameterize this model in terms of observables from Born-Oppenheimer density functional theory (DFT), we
rewrite the energy of the lower surface (electronic ground state) up to 4th order and drop the “−” subscript, yielding:

ϵ (Q) + ∆ = a2Q
2 + a4Q

4, (2)

where a2 = 1
2
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)
and a4 = 1

4

(
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)
. We fit a2 and a4 to DFT total energies from a series of distorted

structures (using VASP, PAW potentials, PBE functional, 600 eV plane wave cutoff, 7×7×7 k-point mesh for oxide

∗ Present address: Department of Materials Science and Engineering, University of Texas at Dallas, 75080 Richardson, TX, USA
† fabini@mit.edu
‡ david.egger@tum.de

mailto:Present address: Department of Materials Science and Engineering, University of Texas at Dallas, 75080 Richardson, TX, USA
mailto:fabini@mit.edu
mailto:david.egger@tum.de


2

Supplementary Figure 1. Energetics of trigonal distortions. DFT-computed energies as a function of trigonal displacement
of the octahedral cations, u111, and fitted 2-level PJT model parameters for bromide perovskites (panels a and b), oxide
perovskites (panels c-f ), and rocksalt tellurides (panels g and h). In panels a, c, e, and f, markers are data and solid lines
are fits to Equation 2. Fitted values of a2 and a4 are visualized panels b, d, f, and h across each chemical series. For each
family of compounds except the Sr-oxides, a progression from negligible to weak to strong PJT effects is found as a4 increases
and a2 decreases. For the Sr-oxides, the progression is similar but a2 does not quite cross 0 for paraelectric SrTiO3, unlike for
ferroelectric BaTiO3, illustrating the secondary influence of chemical pressure. A strong PJT effect (a2 < 0) is found for systems
with acentric cation site symmetry (3m) in the experimental ground state crystal structures (CsGeBr3, BaTiO3, SnTe, GeTe, all
space group R3m). CsSnBr3, recently shown to exhibit acentric Sn site symmetry (1, space group P21) at low temperatures[2]
lies near a2 = 0, with a weak PJT erroneously predicted at the equilibrium unit cell size. All other cases with a2 > 0 have
cations on sites with inversion symmetry in the experimental ground state crystal structures (m3̄m for BaSnO3, BaZrO3, SrTe,
and PbTe; 1̄ for CsSrBr3, CsPbBr3, SrSnO3, and SrZrO3; 4/m for SrTiO3). CsSrBr3, (Ba,Sr)SnO3, and SrTe exhibit negligible
PJT effects: the vibronic anharmonicity coefficient, a4, is much smaller than for the other compounds in each series.

and bromide perovskites, 9×9×9 for rocksalt tellurides). It is not straightforward to extract the appropriate ∆ from
DFT so that F and K0 can be obtained explicitly from a2 and a4. Nevertheless, there is insight to be had in the
values of a2 and a4 directly: a2 < 0 corresponds to the strong case of the PJT effect, and a4 → 0 as the PJT effect
becomes negligible (i.e., either as the vibronic coupling constant F → 0 or as the energy separation between the ground
state and the degenerate excited states 2∆ → ∞). Despite the differing symmetries of the degenerate excited state
orbitals for d0 and s2 cations in octahedral coordination, these two cases are known to give rise to the same, trigonal
distortion.[3, 4] For this study of chemical trends and in a manner similar to previous reports,[5, 6] we apply rigid
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trigonal displacements of the octahedral cations along [111] rather than perturbing along the exact phonon eigenvector.
We examine three series of compounds (bromide perovskites, oxide perovskites with either Ba2+ or Sr2+ on the

A-site, and rocksalt tellurides) which modulate the PJT effect strength across a wide range, and correlate the results
(Supplementary Figures 1 and 2) to chemistry and bonding. Supplementary Figure 1 shows that, as we traverse the
series CsSrBr3 → CsPbBr3 → CsSnBr3 → CsGeBr3, the quadratic coefficient in the 2-level PJT model, a2, softens
considerably and eventually becomes negative, corresponding to the strong case of the PJT effect and the formation of
lone pairs in CsGeBr3. Though atomic masses play a role via the primary force constants, K0, one can see this is not
the dominant factor in the trend in a2: the vibronic contribution to the quadratic coefficient is essential. Simultaneously,
the quartic coefficient, a4, (vibronic anharmonicity) rises considerably across the series. The value of a4 for CsPbBr3
is 8 times that for CsSrBr3. Thus, these two compounds are in very different PJT regimes and it is the impact of this
distinction on the lattice dynamics of the two which we also probe in this study. We refer to CsSrBr3 as exhibiting a
“negligible” PJT effect, and contrast its behavior with that of CsPbBr3, which shares a weak PJT effect with other
technologically-relevant Pb(II) bromides and iodides, and with that of CsGeBr3,[7] which exhibits a strong PJT effect.

Supplementary Figure 1 reveals similar trends for the oxide perovskites and the rocksalt tellurides, with perfect
correspondence between the finding of a strong PJT effect (a2 < 0) and those systems which exhibit acentric cation
environments in their ground state phases. Notably, the strengths of the PJT effects we fit numerically also perfectly
track the chemical trends expected for d0 cations (e.g. Ti4+ exists in more strongly distorted environments than
Zr4+)[8] and s2 cations (e.g. distortions increase in the order Pb2+<Sn2+<Ge2+).[9]

Supplementary Figure 2 places the fitted PJT model parameters onto a unified scale to show how they vary between
the chemical families. Fixed-∆, varying-F curves of (a2(K0, F,∆), a4(F,∆)) are shown for evenly spaced values of K0

to illustrate that the families are primarily separated by their varying elastic properties in the absence of vibronic
coupling (K0), while intra-family variation can be roughly explained by differing vibronic coupling coefficients, F .
Fixed-F , varying-∆ curves have a different functional form and fit the intra-family variation less well, suggesting the
energy separation between the ground and degenerate excited states plays a secondary role in modulating the PJT
effect strength across these particular series.

Supplementary Figure 2. Modulating the PJT effect. Values of a2 and a4 from fitting DFT energies to Equation 2 across
several bromide perovskites, oxide perovskites, and rocksalt tellurides. To illustrate the influences of the primary force constant,
K0, and vibronic coupling constant, F , contours of K0 at a fixed ∆ are shown. Each family of materials falls roughly onto a
curve of varying F , with the families differentiated from one another by different elastic properties (K0). Notably, the series of
bromide perovskites runs from a strong PJT effect (CsGeBr3) through a weak PJT effect (CsPbBr3) to a negligible PJT effect
(CsSrBr3) as the vibronic coupling coefficient, F , decreases towards zero. Additionally, the trends in a2 show that softening of
the harmonic force constant is not merely a mass effect, but includes a substantial vibronic contribution to the curvature.[1]



4

Supplementary Note 2: Crystal growth and processing of high-quality CsPbBr3

Synthesis and Purification Runs: 6.423 g of CsBr (ChemCraft, 99.999%) and 11.077 g of PbBr2 (Sigma Aldrich,
99.999%) were mixed and ground together thoroughly using a mortar under Ar environment. This material was
then flame-sealed under 1.4 × 10−2 mbar vacuum into a fused silica ampoule (i.d. 10mm) with a sharp tip. The
ampoule was placed in the hot zone of a custom-built 3-zone Bridgman furnace (HTM Reetz). The temperatures
were set to 675, 400 and 400 ◦C. The sample was left overnight to ensure a full melt and synthesis reaction, then
moved through the furnace at a speed of 4.86mm/h while undergoing 0.3 rpm rotation until it had passed outside
the furnace. The sample was reset and the same temperature profile applied, and moved through the furnace more
slowly (2.52mm/h) to fully segregate black impurities near the top of the ingot. The resulting ingot was opened
under Ar environment and the black regions at the top were cut off and discarded. The material was then broken into
chunks to reduce the risk of thermal expansion cracking the ampoule and flame-sealed under 1.1× 10−2 mbar vacuum
into a new fused silica ampoule (i.d. 10 mm) with a sharp tip. A final purification run, with identical conditions to
the previous run showed no further black impurities. The material was then sufficiently pure to yield higher crystallinity.

Crystal Processing: The ingot was opened under Ar environment and cut into 2mm-thick wafers using a Crystal
Systems Corporation Cu-02 Desktop Crystal Cutter with Goniometer operating at 60 rpm with oil-based lubricant.
The surfaces of these wafers were polished using a Crystal Systems Corporation TP-02 Polisher operating at 20 rpm,
with MicroMesh SiC cutting papers used to get successively finer surfaces with a final polish of 12 000 grit producing
an optical mirror-like surface. These processing steps were completed under Ar environment to preserve the pristine
surfaces and the crystals were sealed under Ar for transport, ensuring that both the raw material and as-grown crystals
were never exposed to ambient conditions.
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Supplementary Note 3: Lattice parameters and volumetric expansion coefficient

Supplementary Table 1 shows the theoretical lattice parameters, obtained from fitting the free energy as a function of
volume to a Birch-Murnaghan equation of state[10, 11] for CsPbBr3 and CsSrBr3 in the cubic Pm3̄m and orthorhombic
Pbnm phases. The details of the density-functional theory (DFT) calculations are given in the Methods section of the
main text. The experimental lattice parameters estimated from X-ray diffraction (XRD) experiments at ≈527K and
≈308K for the cubic and orthorhombic phases, respectively, are provided as well. Notably, the difference between
theoretical and experimental lattice constants is lower than 1% for both phases.

Supplementary Table 1. DFT-calculated lattice constants of the cubic Pm3̄m and orthorhombic Pbnm phases of CsPbBr3 and
CsSrBr3. In parenthesis: experimental lattice parameters measured at 527K (Pm3̄m) and 308K (Pbnm).

Compound Cubic Orthorhombic
a a b c

CsPbBr3 5.81 (5.88) 8.20 (8.22) 8.25 (8.27) 11.75 (11.78)
CsSrBr3 5.92 (5.93) 8.33 (8.34) 8.28 (8.25) 11.86 (11.83)

Supplementary Figure 3 shows the cell volume per formula unit as a function of temperature, calculated from the lattice
parameters measured in XRD experiments, which are compared to literature data[12] of CsSrBr3:Eu in Supplementary
Figure 4. Supplementary Table 3 shows the DFT-optimized structure of CsSrBr3 in the Pnma phase. We fitted a
second order polynomial model for the volume:

V [Å3
] = a+ b ∗ T [K] + c ∗ T 2[K] (3)

The fitted coefficients for CsPbBr3 and CsSrBr3 are shown in Supplementary Table 2, and the resulting models are
shown as dashed lines in Supplementary Figure 3a. The volumetric thermal expansion coefficient can be defined as:

αV [K−1] =
1

V

∂V

∂T
(4)

We used Equation 4 to numerically estimate by central differences the values of αV from the volumes measured in XRD
at each temperature. The result is shown in the scatter plots of Supplementary Figures 3b and c for CsPbBr3 and
CsSrBr3, respectively. Furthermore, αV (T ) can be estimated in another way by using the model in Equation 3 in 4.
The result of this procedure is shown as dashed lines in Supplementary Figures 3b and c for CsPbBr3 and CsSrBr3,
respectively. These models describe the experimental data in a satisfactory manner. Specifically, the coefficients αV

of CsPbBr3 and CsSrBr3 were estimated to be ≈1.29 × 10−4 K−1 and ≈1.32 × 10−4 K−1 at 300K, respectively, in
excellent agreement with values reported in the literature.[12] As temperature increases, αV slightly decreases to
≈0.76× 10−4 K−1 and ≈0.78× 10−4 K−1 for CsPbBr3 and CsSrBr3 at 700K, respectively.

Supplementary Table 2. Coefficients fitted to the data of volume (per formula unit) as a function of temperature. These
coefficient determine the model of thermal expansion in CsPbBr3 and CsSrBr3.

Coefficient CsPbBr3 CsSrBr3
a [Å3

] 1.913× 102 1.939× 102

b [Å3
K−1] 3.339× 10−2 3.446× 10−2

c [Å3
K−2] −1.245× 10−5 −1.281× 10−5
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Supplementary Figure 3. Thermal expansion. a) Unit cell volume (per formula unit) as a function of temperature for
CsPbBr3 and CsSrBr3. The corresponding volumetric thermal expansion coefficient for b) CsPbBr3 and c) CsSrBr3. The dashed
black lines correspond to the values modeled with a second order polynomial (see text for details).

Supplementary Figure 4. Comparison of temperature-dependent lattice parameters. Comparison of reduced lattice
parameters from powder diffraction for CsSrBr3 (this work) and CsSrBr3:Eu,[12] with the orthorhombic phase expressed in the
Pnma setting. Agreement is favorable, with a possible small discrepancy in transition temperatures and cubic phase lattice
parameter.

Supplementary Note 4: Infrared spectra and fitting details

Due to the large LO/TO splitting and anharmonic phonon coupling in halide perovskites (HaPs), we used a four
parameter semi-quantum (FPSQ) model to fit the measured infrared (IR) reflectivity spectra. In this model, proposed
by Berreman and Unterwald,[13] the dielectric function is not restricted to the harmonic characteristics of an additive
Lorentz dispersion, and compared to the latter, it allows for a different frequency (ωLO/TO) and damping (γLO/TO)
of the LO and TO phonons. This model has been successfully used to describe the IR response of halide and oxide
perovskites, as well as materials with Reststrahlen and anharmonicity signatures.[14–17] Within the FPSQ model, the
complex dielectric function can be written as:

ε(ω) = ε∞

Nosc∏
j=1

ω2
LO,j − ω2 + iωγLO,j

ω2
TO,j − ω2 + iωγTO,j

, (5)

where ω is the frequency of incident light, Nosc is the number of polar phonons and ε∞ is the high-frequency
dielectric constant, which we fix to the values calculated using density-functional perturbation theory (DFPT) for
the orthorhombic phases (ε∞ = 4.3 and 2.9 for CsPbBr3 and CsSrBr3, respectively). The reflectivity at quasi-normal
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Supplementary Table 3. Fractional coordinates of DFT-optimized CsSrBr3 in the Pnma phase with lattice constants
(8.281, 11.797, 8.234). The coordinates are reported per element proceeding along Cs (4 atoms), Sr (4 atoms), and Br (12 atoms).

0.0782794124058532 0.7500000000000000 0.0237544762301769
0.9217205875941468 0.2500000000000000 0.9762455237698231
0.4217205875941468 0.2500000000000000 0.5237544762301769
0.5782794124058532 0.7500000000000000 0.4762455237698231
0.5000000000000000 0.5000000000000000 0.0000000000000000
0.0000000000000000 0.5000000000000000 0.5000000000000000
0.5000000000000000 0.0000000000000000 0.0000000000000000
0.0000000000000000 0.0000000000000000 0.5000000000000000
0.6952342785779840 0.4539374361406396 0.6946749577520503
0.3047657214220160 0.5460625638593604 0.3053250422479497
0.8047657214220160 0.5460625638593604 0.1946749577520503
0.1952342785779839 0.4539374361406396 0.8053250422479497
0.3047657214220160 0.9539374361406396 0.3053250422479497
0.6952342785779840 0.0460625638593604 0.6946749577520503
0.1952342785779839 0.0460625638593604 0.8053250422479497
0.8047657214220160 0.9539374361406396 0.1946749577520503
0.4936690208802648 0.7500000000000000 0.9074751120548148
0.5063309791197352 0.2500000000000000 0.0925248879451852
0.0063309791197352 0.2500000000000000 0.4074751120548148
0.9936690208802648 0.7500000000000000 0.5925248879451852

incidence is described by Fresnel formula:[18]

R =

∣∣∣∣∣
√

ε(ω)− 1√
ε(ω) + 1

∣∣∣∣∣
2

(6)

Supplementary Figures 5a and b show the measured IR reflectivity spectra of CsPbBr3 and CsSrBr3 in the full
measurement range up to 350 cm−1, as well as the fitted FPSQ model (Equations 5 and 6). The reflectivity of
CsPbBr3 was fitted using 4 and 7 modes for CsPbBr3 and CsSrBr3, respectively. Further increasing Nosc did not
improve the fitting quality (χ2 = 0.991 and 0.999 for CsPbBr3 and CsSrBr3, respectively), while increasing the
computation effort.

The TO modes appear as poles of the dielectric function, while the LO modes as zeros. Thus, the imaginary part of
the complex dielectric function (ε′′) gives the positions of the TO modes and the damping function of the TO, i.e.,
Im(−1/ε(ω)), gives the position of the LO modes.[19, 20] Supplementary Figures 5c and d show the values of ε′′(ω)
and Im(−1/ε(ω)) as obtained for CsPbBr3 and CsSrBr3, respectively. The position of the peaks confirm the softening
of the dominant TO mode, as well as the enhanced LO/TO splitting, of CsPbBr3 compared to CsSrBr3, as discussed in
the main text. Furthermore, the shape of ε′′(ω) is in remarkable agreement to the DFT-based IR activities calculated
in the main text, although a systematic error in the frequencies of the TO modes remains noticeable. This allows us to
assign the dominant TO modes of CsPbBr3 and CsSrBr3, at 99.7 and 163.9 cm−1, respectively, to the B3u irreducible
representation.
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Supplementary Figure 5. Complete IR data for orthorhombic phases. IR-reflectivity spectra and FPSQ model fitting
of a) CsPbBr3 and b) CsSrBr3 measured at room temperature, showing the full range of frequencies (0 cm−1 to 350 cm−1).
No features were detected above ≈200 cm−1 The imaginary part of the dielectric function ε′′(ω) and the damping function
Im(−1/ε(ω)) (dotted curves) of CsPbBr3 and CsSrBr3 are shown in panels c) and d), respectively.

Supplementary Note 5: Temperature-dependent Raman spectra of CsSrBr3

Supplementary Figure 6 shows temperature-dependent Raman spectra of CsSrBr3. Supplementary Figure 7 reports
results from a control experiment showing that the main Raman feature of quartz is not visible in the Raman spectrum
of CsSrBr3.
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Supplementary Figure 6. Temperature-dependent Raman spectra of CsSrBr3. Raman spectra from 80 K (blue) to 580
K (red) in steps of 100 K. No abrupt change is observed at the phase transition around 520 K. The peaks’ energy redshifts with
increasing temperature, and a central peak is merged at high temperature, indicating a dynamic symmetry breaking of the cubic
phase, similar to CsPbBr3.
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Supplementary Figure 7. Control experiment for quartz. Raman spectrum of quartz capillary compared to the Raman
spectra of CsSrBr3 at various temperatures. The main feature in the Raman spectrum of quartz at ∼110 cm−1 is not visible in
the spectra of CsSrBr3.

Supplementary Note 6: Calculation of the Raman and IR activities

We calculated the Raman activity tensors, IRaman, and IR activities, IIR, using the Phonopy-Spectroscopy package[21,
22]. IRaman can be calculated from the derivative of the polarizability tensor with respect to the phonon modes
eigenvectors:[23, 24]

IRaman(s) ∝
∂α

∂Q(s)
≡ ∂ϵ∞

∂Q(s)
, (7)

where s is the phonon mode index, Q(s) is the normal mode coordinate, α is the polarizability tensor, and ϵ∞ is the
macroscopic high-frequency dielectric tensor, which we calculated using DFPT, as implemented in VASP.[25] The scalar
Raman intensities, IRaman, are calculated from the components of the tensor, averaged for the geometry, as detailed in
Refs. 23 and 21. The calculated IRaman are broadened with Lorentzian functions of using a width of 5 cm−1, so that
the modes can be distinguished (see Figure 3, main text).

The IR spectra were calculated from IIR(s) for the phonon modes at the center of the Brillouin zone (BZ) as follows.
The value for IIR is equal to the derivative of the macroscopic polarization, P, with respect to the displacements along
the phonon-mode coordinates. The calculation is simplified by using the Born effective charges, Z∗j

α,β , and the Γ-point
displacements of the phonon modes, Xj

β(s), (i.e., eigenvectors normalized by the square root of the atomic masses) as
detailed elsewhere:[21, 23]

IIR(s) =

3∑
α=1

∣∣∣∣ ∂Pα

∂Q(s)

∣∣∣∣2 =

3∑
α=1

∣∣∣∣∣∣
Natoms∑
j=1

3∑
β=1

Z∗j
α,βX

j
β(s)

∣∣∣∣∣∣
2

, (8)

where α and β are indices of Cartesian directions and j is the atomic index. Equation 8 simplifies the calculation of IR
spectrum, since the values for Z∗j can be obtained from a single DFPT calculation.

Supplementary Note 7: Ion mass and bonding effect on IR spectra of CsPbBr3 and CsSrBr3

In the main text, we discussed a large blue shift of the IR spectrum of CsSrBr3 with respect to CsPbBr3. The blue
shift of the Raman spectrum is considerably smaller (≈4 cm−1, an order of magnitude smaller than the shift of the IR
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spectrum). To understand the role of the ionic mass in the frequency shift, we performed a thought experiment in the
calculation of the IR and Raman spectra of CsSrBr3. We calculated the normal modes of CsSrBr3 using a fictitious mass
of Sr that is equal to the mass of Pb, i.e., MSr∗ = MPb. Since IR and Raman only probe phonon modes in the center
of the BZ, we focus and show only the modes at the Γ-point. Furthermore, we used the displacements of phonon modes
in the fictitious system, XSr∗

β , to calculate the IR and Raman activities as in Equations 7 and 8 (see Supplementary
Figure 8b and c). Supplementary Figure 8a shows the phonon density of states (DOS) projected onto the Cs, Br and
M-site of CsPbBr3, CsSrBr3 and the fictitious CsSr*Br3. Interestingly, the PDOS of the fictitious system on the M-site
recovers many features of the PDOS calculated for CsPbBr3for modes with frequencies below ≈100 cm−1. However,
although the most prominent IR-active mode at ≈146 cm−1 shifts to ≈129.6 cm−1 in the ficticious system, it still lies
considerably above the IR-active modes of CsPbBr3 (≈68 cm−1). Notably, mostly Br and the M-site contribute to
these modes, correspond to the same irreducible representation, B3u, and have very similar eigenvectors, as shown in
Supplementary Figures 9a and b.
In a harmonic description of the vibrations, the interatomic force constant, k, is the other factor influencing the mode
frequencies besides the atomic mass. k is obtained as the second derivative of the crystal potential energy Eelec (from
DFT calculations) with respect to atomic displacements:[26, 27]

kα,β(lj, l
′j′) =

∂2Eelec

∂dljα∂d
l′j′

β

(9)

where d are atomic displacements and l labels the unit cell. Since Eelec depends on the electronic structure and
chemical bonding, inspecting k serves as a proxy to analyze the impact of the lone-pair of electrons (LPE) on the
frequency shift. Supplementary Figure 9c shows the normalized values of k as a function of the interatomic distance.
Notably, the M–Br force constants of CsSrBr3 are considerably larger than those of CsPbBr3 at small interatomic
distances that are close to the M–Br bond lengths. This suggests that the electronic structure, and consequently the
LPE, have a dominant impact on the IR spectrum of CsPbBr3 and CsSrBr3. We note that at larger interatomic
distances, the force constants of CsPbBr3 are larger than those of CsSrBr3. This reflects the long-range effects of the
LPE in CsPbBr3, as discussed elsewhere (see below).[28–30]

Calculations of CsSr*Br3 also show that the impact of changing the ionic mass is smaller on the Raman than on the IR
spectrum (see Supplementary Figure 8c). This explains the very similar spectra measured for CsPbBr3 and CsSrBr3,
and can be understood from the phonon PDOS at the Γ point (see Supplementary Figure 8a), which shows similarly
low contributions of the M-site in both compounds at frequencies below ≈100 cm−1 where most of the Raman-active
modes appear.
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Supplementary Figure 8. Projected phonon DOS. Site-projected Phonon DOS at the Γ point, IR and Raman activities
of orthorhombic CsPbBr3 (panels a-c), CsSr*Br3 (panels d-f), and CsSrBr3 (panels g-i). CsSr*Br3 is a fictitious system with
modified Sr mass set as being equal to that of Pb.

Supplementary Note 8: Further analysis of molecular dynamics trajectories

It can be shown that the vibrational density of states (VDOS) equals the phonon DOS when the derivatives of
the atomic coordinates (velocities, v(t)) are given in terms of the (mass-weighted) normal mode vibrations , i.e.,
mjvj(t) = mj ṙj(t) =

∑
s −iωs Qj(s)e−iωst.[26, 31–33] We can then write the VDOS as the power spectrum of the

mass-weighted velocity autocorrelation function (VACF):

VDOS =

∫ ∞

0

∑Nions

j=0 ⟨mjvj(t) ·mjvj(0)⟩∑Nions

j=0 ⟨|mjvj(0)|2⟩
e−iωtdt, (10)

where ⟨·⟩ means the average over all time steps (i.e., shifting reference t = 0). Supplementary Figure 10 shows
the VDOS calculated from the molecular dynamics (MD) trajectories of CsPbBr3 and CsSrBr3 at 525 and 570K,
respectively. Notably, the VDOS of both compounds reproduces well the large phonon DOS at low frequencies
(≤50 cm−1) seen in the harmonic calculations. For higher frequencies, we see a strong softening of the optical modes
in both CsPbBr3 and CsSrBr3compared to the harmonic calculations. This phonon softening has been previously
discussed as a fingerprint of anharmonicity, not only for HaPs, but also for thermoelectric materials.[29, 34–37]

Supplementary Figure 11 shows the time evolution of the rotation angle around the z Cartesian axis for all eight
MBr6 octahedra of CsPbBr3 and CsSrBr3, calculated from the MD trajectories at 525 and 570K, respectively. For
both materials, ϕz(t) shows similar behavior. It rapidly oscillates for some tens of ps around a finite angle, ϕz(t) ̸= 0,
before changing sign. These fast oscillations occur around distorted structures that do not exhibit the average cubic
symmetry of the high-temperature HaPs, and can allow for a finite Raman response without breaking selection
rules. Furthermore, the systems oscillate among these distorted structures at a much lower frequency. This kind of
low-frequency dynamic disorder is present in both CsPbBr3 and CsSrBr3. However, it seems to be slower for the
former, which results in a sharper Φz(ω) towards 0 cm−1 for CsPbBr3 (cf. Figure 11 and Figure 6, main text).
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Supplementary Figure 9. Phonon eigenmodes and interatomic force constants. Schematic representation of the phonon-
mode eigenvector involved in the strongest IR-active phonon mode with irreducible representation B3u of orthorhombic a)
CsPbBr3 and b) CsSrBr3. c) Normalized interatomic force constants as a function of the interatomic distance for CsPbBr3 (red
circles) and CsSrBr3 (blue triangles). The filled markers show the M–Br force constants and the unfilled markers show all other
interactions.

Finally, in Supplementary Figure 12 we show the perturbation to the charge density upon a single Br displacement along
the M–Br–M axis. The impact of the LPE and the corresponding resonant bonding is evident from the long-range
perturbation to the charge density in CsPbBr3 (Figure 12a). Resonance is reduced in CsSrBr3 due to the reduced
covalency and homopolar bonding fraction [38, 39], but is not completely removed (see Supplementary Figure 12b).
The disorder potential, calculated using the method described in Ref 29, also shortens dynamically in CsSrBr3 due to
the Br motions. The transversal Br motion is energetically more favorable, as we have previously discussed,[40] and fa-
cilitates octahedral rotations. This feature of CsPbBr3 is also present in CsSrBr3 (see Supplementary Figures 12c and d).
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Supplementary Figure 10. Vibrational density of states. VDOS calculated as the power spectrum of the VACF from MD
trajectories of cubic a) CsPbBr3 at 525K and b) CsSrBr3 at 570K. The phonon DOS of the cubic phase calculated using finite
differences is shown in panels c) and d). Notice the finite phonon DOS at negative frequencies, which indicate imaginary phonon
modes.
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Supplementary Figure 11. Time evolution of rotation angles. Rotation angle around z, ϕz, of individual octahedra (denoted
as M(i), with i the M-site index) in the supercell as a function of time from DFT-based MD simulations of cubic a) CsPbBr3 and
b) CsSrBr3.
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Supplementary Figure 12. Shortening of disorder correlation. Isosurface representations of the changes in the charge density
(≥8.1× 10−3 eÅ−3) upon Br displacement along the Br–M–Br bonding direction (5% of lattice constant) for a) CsPbBr3 and b)
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