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Fig. S1 TEM image of top of B50 sample

S1 TEM

Figure S1(a) corresponds to a low magnification bright field TEM
image of a representative cross-section of the sample B50. The
thickness of the GaAs QW has been measured in different regions.
The variations in thickness are found to be around 4 nm and 2
nm in the edges and in the facets, respectively, confirming the
disorder in the GaAs QW. In the HR-TEM image performed in
one of the edges of the nanowire cross section, figure S1(b), the
variation in the QW thickness (marked by white dashed lines)
between the edge and the facets is clearly visible.

Figures S2 and S3 are additional TEM images of sample B50
taken from the top and bottom of a nanowire. These images
demonstrate the inhomogenous well width around the nanowire.
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Fig. S2 TEM image of bottom of B50 sample

S2 1D Finite Square Well Model
For a semiconductor the Fermi-Dirac distribution for electrons in
the conduction band and holes in the valence band is given by,

fe,h =
1

exp((E−Ec,v
f )β )+1

, (1)

where β = 1/kBT , T is the electron temperature and Ec,v
f is the

Fermi energies of the electrons and holes. In the high temperature
limit we can ignore the +1 in the denominator, and the electrons
and hole occupancies will follow Boltzmann statistics,

fe,h ∝ exp(−Eβ ) . (2)

The rate of emission is proportional to the occupancy of the elec-
trons multiplied by the occupancy of the holes. That is,

f (E) ∝ fe fh ∝ exp(−(Ee +Eh)β ) , (3)

f (E) ∝ exp(−(E−Eg)β ) , (4)

1

Electronic Supplementary Material (ESI) for Nanoscale.
This journal is © The Royal Society of Chemistry 2015



Fig. S3 TEM image of top of B50 sample

where E is the energy of the photon emitted on recombination
and Eg is the band gap of the semiconductor material. For a semi-
conductor the energy dependence of the emission spectrum in the
classical limit is proportional to the Boltzmann distribution, with
an energy-offset equal to the band gap energy, multiplied by the
joint density of states for the electrons and holes:

I(E) ∝ g(E) f (E) , (5)

where f (E) is as above and g(E) is the joint density of states for
the electrons and holes. The core will have a 3–dimensional den-
sity of states but the QWT layer is confined in one direction so we
need to use the 2–dimensional density of states for this case.

S2.1 Density of States

Consider an N–dimensional (N-D) box of side L (Volume= LN). A
particle inside this box experiences a potential V given by,

V (xi) = 0 for 0 < xi < L , (6)

V (xi) = ∞ for xi < 0 or L < xi , (7)

where xi are the orthogonal coordinates of the system, for exam-
ple for a 3–dimensional system xi = x,y or z. In position repre-
sentation the time–independent Schrödinger equation for a non-
relativistic particle for the ith coordinate is given by,

− h̄2

2m
∂ 2Ψ(x)

∂x2
i

+V (x)Ψ(x) = EΨ(x) . (8)

Equation (7) implies that Ψ(x)→ 0 at xi = 0 and xi = L. For 0 <

xi < L we have that,

∂ 2Ψ(x)
∂x2

i
=−2mE

h̄2 Ψ(x) , (9)

let us write,

Ψ(x) =
N

∏
i=1

ψ(xi) , (10)

equation (9) then reduces to,

∂ 2ψ(xi)

∂x2
i

=−2mE
h̄2 ψ(xi) . (11)

By considering the boundary equations (6 and 7) the normalised
wave function for the ith component must be given by,

ψ(xi) =
1

L
1
2

sin(kixi) , (12)

with ki = niπ/L, and so the overall wave–function is given by,

ψ(x) =
1

V
1
2

N

∏
i=1

sin(kixi) . (13)

The volume occupied by each k-state in k-space is,

Vk =
(

π

L

)N
. (14)

The number of allowed states with |k| ∈ [k,k+dk] is described by
the function g(k)dk where g(k) is the density of states,

g(k)dk =
V in k-space of a shell of an N-D sphere
V in k-space occupied per allowed state

, (15)

for the case of N=3 and N=2 we have,

g3D(k)dk =
4πk2dk(

π

L
)3 , (16)

g2D(k)dk =
2πkdk(

π

L
)2 . (17)

Now rewriting in terms of energy using, E = h̄2k2/2m∗ and dE =

h̄2dk/m∗ we have,

g3D(E)dE =
L3

π2

(
2m∗

h̄2

)
E

1
2 dE , (18)

g2D(E)dE =
L2

π

(
2m∗

h̄2

)
dE, (19)

Dropping the numerical factors gives,

g3D(E)dE ∝ E
1
2 dE , (20)

g2D(E)dE ∝ dE . (21)

2



S2.2 Model

Using the density of states g3D(E) for the core and g2D(E) for the
QWT we have,

BCore(E) ∝
√

E−ECore exp
(
−E−ECore

kBT

)
, (22)

BQWT(E) ∝ exp

(
−

E−Ee1→hh1
QWT

kBT

)
, (23)

where T is the temperature, and ECore and Ee1→hh1
QWT are the band

gap energies in the core and the QWT. Equation (22) can be
recognised as the Maxwell-Boltzmann distribution, and equation
(23) can be considered as a two-dimensional version of the Maxwell-
Boltzmann distribution. The nanowires, however, do not have a
perfect structure and so the spectral peaks will also be broadened
by defects and disorder, which was modelled using a Gaussian,
G(E). To combine the two effects we take the convolution of the
two,

ICore(E) ∝ GCore(E)⊗BCore(E−ECore) , (24)

IQWT(E) ∝ GQWT(E)⊗BQWT(E−EQWT) , (25)

where,

GCore(E) = exp

(
− E2

2σ2
Core

)
, (26)

and,

GQWT(E) = exp

(
− E2

2σ2
QWT

)
, (27)

The model for the measured photoluminescence is then a linear
combination of these two peaks,

IPL(E) = aCoreICore(E)+aQWTIQWT(E) , (28)

where aCore and aQWT are constants dependent on the intensity of
emission from the core and QWT. A least squares fit was used to
determine the following parameters: T,ECore,σCore,EQWT,σQWT.
Using the values for ECore and EQWT and a simple model for the
band gap, as illustrated in Figure S5, it is possible to calculate an
estimate for the well width.

Figure S4 shows a typical spectrum of a nanowire from sample
B100 displayed on a logarithmic scale. The straight line seen
in the high energy tails is indicative of a Boltzmann distribution
(exp(−(E−E0)/kBT )) and is further confirmation of our models
validity.

S2.3 Finite Well Model for the Band Structure

The wavefunction of excited electrons and holes in the QWT layer
will undergo a perturbation due to quantum confinement effects
from the finite potential well created from the difference in band
gap between the Al0.4Ga0.6As barrier layers and the GaAs QWT
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Fig. S4 PL spectrum of a nanowire from sample B100 shown on a
logarithmic scale. The blue dots are the measured data and the red
dashed line is the model.
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Fig. S5 A schematic diagram showing the band gap of a
GaAs/Al0.4Ga0.6As quantum well. The horizontal red lines represent the
energy level of the ground state for a bound particle in the potential well
where ∆ECB and ∆EVB are the barrier heights. CB and VB are the
conduction and valence band respectively.

layers. As stated previously this confinement will increase the
energy of the ground state transition. The increase in energy due
to confinement is needed to be able to deduce the width of the
well. Consider a finite well of width d and depth V centred on
x = 0, and a particle whose effective mass differs in the barrier,
m∗b (Al0.4Ga0.6As), and the QWT, m∗q (GaAs) (b = QWT; q =
Core). The wavefunction of the particle is given by,

ψq(x) =C exp(±kx) for |x|< d/2 , (29)

ψb(x) =C′ exp(±κx) for |x|> d/2 , (30)

where,

k =

√
2m∗qE

h̄2 and κ =

√
2m∗b
h̄2 (V −E) . (31)

Continuity conditions (ψ and its derivative with respect to x are
continuous) restrict the allowed k-states to solutions of,

tan
(

kd
2

)
=

m∗qκ

m∗bk
, (32)
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rearranging this equation to be in terms of energy gives,

tan

√2m∗qE

h̄2
d
2

=

√
m∗q
m∗b

(
V
E
−1
)

. (33)

The model for the quantum well we used is shown in Figure S5.
The electrons are bound to a potential well of depth ∆ECB and the
holes are bound to a well of depth ∆EVB. The values we measure
from the photoluminescence are EQWT and ECore. From these val-
ues we can deduce the width of the well by solving the following
set of simultaneous equations:

∆E = EQWT−ECore = ∆Ee +∆Eh , (34)

tan

√2m∗q,eEe

h̄2
d
2

=

√
m∗q,e

m∗b,e

(
∆ECB

Ee
−1
)

, (35)

tan

√2m∗q,hEh

h̄2
d
2

=

√√√√m∗q,h

m∗b,h

(
∆EVB

Eh
−1
)

, (36)

where the subscripts for the effective mass q and b denote the re-
gions for the QWT layer and the boundary layer respectively, and
the subscripts e and h denote the electron and hole respectively.
Taking the inverse tangent of the latter two equations and substi-
tuting the first equation in, we can solve numerically for Ee and
Eh. Substituting these back in and rearranging we can find the
width of the well, d given by,

d = 2

√
h̄2

2m∗q,eEe
arctan

(√
m∗q,e

m∗b,e

(
∆ECB

Ee
−1
) )

. (37)

S2.4 Surface-Area to Volume

The shape of the nanowire may be approximated by a hexagonal
prism. The surface area and volume are given by,

S = 6l×2R tan(30) , (38)

V = 6l×R2 tan2(30) , (39)

So the surface area to volume ratio of the core is,

SVCore =
6l×2R tan(30)
6l×R2 tan2(30)

=
2

R tan(30)
, (40)

Now modelling the QWT layer as a hollow hexagonal prism of
thickness d, inner radius R and outer radius R+d, the surface
area to volume ratio is given by,

SVQWT =
6l×2(R+(R+d)) tan(30)

6l× ((R+d)2−R2) tan2(30)
, (41)

SVQWT =
2(2R+d)

(2Rd +d2) tan(30)
=

2
d tan(30)

. (42)

As such, the ratio of the surface area to volume ratio of the QWT
and the core is R/d = 20 to 100.

S3 Band Gap and Disorder
Figure S6 shows the average values for the band gap and disor-
der obtained along with one standard deviation either side of the
average value.
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Fig. S6 The mean values and one standard deviation either side of the
band gaps and disorder parameters measured for the core (lower
points) and QWT (upper points).
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S4 Effect of Aluminium variations (ADDED)
Here, we calculate the effect of aluminium concentration varia-
tions on the energetic disorder of each nanowire. Figure S7 shows
the range of energy shifts expect for the QWT for an aluminium
concentration of 0.40±0.06.
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Fig. S7 Energy shift of band gap of QWT with respect to the band gap
of GaAs against the QWT. ε∆E shows the energetic distribution of shifts
for different aluminium concentrations

Table S1 Contribution of aluminium variations to the disorder parameter

Sample Width (nm) σ (meV) ε∆E (meV) ε∆E/sigma
B50 2.1 39 26.7 0.68
B100 4.0 26 8.8 0.34
C100 2.0 39 28.7 0.74

S5 Simulations

Simulations were performed using the software package nextnano++
in 2D. The lattice temperature was set at room-temperature. Charge
carriers were generated uniformly in the nanowire to simulate
above band gap CW laser excitation. Measurements of the core
and QWT were isolated by setting the material of the one not
being measured as the same material as the barrier layer.
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