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Computational Details

Ground state calculations

In this work, we carried out first principles calculations based on DFT1 using plane-wave

pseudopotentials methods as implemented in the Quantum Espresso package (version 6.5).2,3

We employ fully-relativistic PBE norm-conserving pseudopotentials from the Pseudo Dojo

repository,4,5 with the following valence electron configurations: Cs 5s25p66s1, Pb 5d106s26p2,

I 5s25p5 and Br 4s24p5. The pseudopotentials of virtual halogen atoms are constructed using

the virtual v2.x utility in the Quantum Espresso (version 6.5) package.3,6 We use a kinetic

S1



energy cutoff of 60 Ry and sample the Brillouin zone using a Γ centered 6×6×6 Monkhorst-

Pack mesh. The atomic positions and the lattice parameters are fully optimized until the

energy was less than 10−7 eV and the absolute value of force on the atom was less than 0.01

eV/Å. All structural optimizations are performed using a 6×6×6 k-point grid and without

including spin-orbit interactions. In all other calculations reported throughout this work,

spin-orbit coupling is fully accounted for.

We employ Density Functional Perturbation Theory (DFPT)7 as implemented in the

Quantum Espresso code to calculate vibrational properties of mixed halide systems. We

calculate the normal vibrational modes within the harmonic approximation at the Brillouin

zone center, using a dense grid of 12 × 12 × 12 for the ground state charge density. This

setup was chosen in order to achieve a converged dielectric permittivity for CsPbI3 and

CsPbBr3, as shown in Figure S1a. The IR absorption spectra shown in Figure 1 of the main

manuscript are calculated as in Ref. 8, where we use a Gaussian broadening corresponding

to a full width at half-maximum (FWHM) of 0.6 THz, in order to match the experimental

line shape. For all mixed species we calculate the atomic masses of virtual atoms by linearly

interpolating between Br and I as we change the mixing ratio. In all DFPT calculations we

apply the acoustic sum rule to the interatomic force constants.

Quasiparticle band structure calculations

We calculate quasiparticle eigenvalues within the GW approximation,9 as implemented

in the BerkeleyGW package10 as, EQP
nk = ϵnk + Z (ϵnk) ⟨nk |Σ (ϵnk)− Vxc|nk⟩, where ϵnk

are the mean-field DFT-PBE eigenvalues, Σ(ω) is the electron self energy operator, Vxc

is the exchange-correlation potential, and Z(ω) is the quasiparticle renormalization factor

expressed as Z(ω) = [1− Re(∂Σ/∂ω)]−1.

In all cases we perform one shot G0W0 calculations with a DPT-PBE starting point including

spin orbit coupling. Within the G0W0 approximation, the electronic self energy Σ is

approximated as the convolution of screened Coulomb interaction W0 and single particle
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Green’s function G0, written schematically as Σ = iG0W0. The single particle Green’s

function is calculated starting from DFT as, G0 (r, r
′;ω) =

∑
nk

ψnk(r)ψ
∗
nk(r

′)

ω−ϵnk−iη
, where the

summation runs over occupied and unoccupied states, ψnk(r) is the DFT wave function

corresponding to the energy eigenvalue ϵnk and η is an infinitesimally small constant, positive

for occupied states and negative for unoccupied states. The screened Coulomb interaction is

given by the expression, W0 (r, r
′;ω) = ε−1 (r, r′;ω) v (r, r′), where v (r, r′) = 1/ |r− r′| is the

bare Coulomb potential and ε (r, r′;ω) is the dielectric function. We model the frequency-

dependent dielectric function via the Godby-Needs plasmon-pole model.11

We converge the dielectric constant and quasiparticle band gap with respect to the density

of the k-point mesh, as shown in Figure S1a and b, and find that the quasiparticle band

gap is converged within 50 meV for a grid density of 6 × 6 × 6, while the high frequency

dielectric constant requires a much denser sampling of 12× 12× 12. A full GW calculation

with this latter grid for all systems described in this manuscript would require extensive

computational resources. Since the quasiparticle band gap is not as sensitive to the k-

grid density as the dielectric constant for these systems, we chose to use a sparser grid of

6 × 6 × 6. As we will show in the next section, we will use the fully converged dielectric

constants for the calculation of exciton binding energies. Furthermore, in all calculations we

use a polarizability cutoff of 15 Ry and sum over 1000 bands. Overall, this setup achieves a

converged quasiparticle correction within less than 0.1 eV for both CsPbI3 and CsPbBr3, as

shown in Figure S1b-d.

Both DFT and quasiparticle band structures are interpolated using Wannier functions as

implemented in the Wannier90 code.12 Maximally localized Wannier functions are obtained

starting from p orbitals on Pb and halogen atoms to generate an initial guess for the unitary

transformations, for a total of 24 wannierized bands. The Wannier interpolated and DFT

computed band structures agree within 1 meV in an energy window up to 2 eV above

and below the valence band top. We then use the Bloch to Wannier rotation matrices to

interpolate the quasiparticle band structures along path Γ (0, 0, 0) - X (0.5, 0, 0) - M
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Figure S1: (a) Convergence of high frequency dielectric constants ε∞ for CsPbBr3 (squares)
and CsPbI3 (circles) with respect to k-point grid density. (b) Convergence of quasiparticle
band gaps with respect to k-point grid density for CsPbBr3 (squares) and CsPbI3 (circles).
(c,d) Convergence of quasiparticle band gaps with respect to the number of bands and
polarizability cutoff for CsPbI3 (c) and CsPbBr3 (d), respectively.

(0.5, 0.5, 0) - Γ - R (0.5, 0.5, 0.5) - X from the quasiparticle eigenvalues on a 6×6×6 grid.

We also tested the Wannier interpolated quasiparticle band structure against the discrete

quasiparticle energies and found the same level of accuracy as in the DFT case (see Figure

S2).
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Figure S2: Wannier interpolated quasiparticle band structure (red lines) overlayed with
discrete quasiparticle eigenvalues (black dots) calculated for CsPbI3. The left panel shows
a full path band structure as indicated in the text above, the right panel shows a zoom-in
figure at R, to better visualize the interpolation near the band edges.

Charge-Carrier Effective Masses

Electron and hole effective masses m∗
e and m∗

h, are calculated from Wannier interpolated

quasiparticle band structures with a parabolic band model. According to the k · p

perturbation theory,13 the effective mass should have a correlation with the band gap in

a two-band isotropic model semiconductor, described as, me

m∗ = 1+ 2
me

|pcv |2
Eg

, where me is the

electron rest mass,m∗ is the charge-carrier effective mass for electron and hole, Eg is the band

gap, pcv is the transition matrix element between the valence band top and conduction band

bottom.13 As shown in Figure 2c of the main manuscript, computed reduced effective masses

follow very closely this simple model, and we can therefore use it to extrapolate effective

masses with thermally corrected quasiparticle band gaps. Figure S3 shows by taking into

account thermal correction, computed reduced effective masses yield better agreement with

measurements for CsPbBr3 and CsPbI3, as reported in Ref. 14.
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Figure S3: Reduced effective masses calculated from Wannier interpolated quasiparticle
band structures (filled circles) and extrapolated effective masses with thermally corrected
quasiparticle band gaps according to the k·p perturbation theory (filled triangles), compared
with experimental values (empty circles) for CsPbI3 and CsPbBr3 reported in Ref.14 All data
points are color coded according to the concentration of Br, as shown in the color bar, and
the dotted lines are guides to the eye.

Optical Excitations

We calculate the optical absorption spectra including electron-hole interactions by solving the

Bethe-Salpeter equation (BSE) within the Tamm-Dancoff approximation15,16 as implemented

in BerkeleyGW package,10
(
EQP
ck − EQP

vk

)
ASvck +

∑
v′c′k′

〈
vck

∣∣Keh
∣∣ v′c′k′〉Av′c′k′ = ΩSASvck,

where ASvck are the coefficients of the exciton wavefunction in the quasiparticle basis, ΩS

is the corresponding excitation energy of state S, and Keh is the electron-hole interaction

kernel. The imaginary part of the dielectric function is calculated as,10,16

ε2(ω) =
16π2e2

ω2

∑
S

|e · ⟨0|v|S⟩|2δ
(
ω − ΩS

)
(1)

where we approximate the velocity operator as v = i∇, as discussed in Ref. 10. We

construct the electron-hole kernel using 10 valence bands and 10 conduction bands in a
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coarse grid of 6×6×6 k-points, and then interpolate it to a fine grid of 40×40×40 k-points.

We use 2 valence bands and 2 conduction bands (including spin degeneracy) in the fine

grid to calculate the absorption spectrum. We calculate the absorption coefficient α(ω) as

α(ω) = 2ω
c

√
1
2

(
−ε1(ω) +

√
ε21(ω) + ε22(ω)

)
, and the exciton binding energy Eb is obtained

directly by subtracting the optical band gap from the quasiparticle band gap.

Figure S4: (a,b) Convergence of exciton binding energies with respect to patch size for (a)
CsPbBr3 and (b) CsPbI3 (both tested using a 20× 20× 20 k-point grid centered at Γ). The
largest patch size corresponds to the full Brillouin zones in each case. (c,d) Convergence
of exciton binding energies with respect to grid density for (c) CsPbBr3 and (d) CsPbI3
(calculated with converged patch radii of 0.25 ×2π/a and 0.07 ×2π/a, respectively.)
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To converge the exciton binding energy with respect to the density of the fine k-point mesh,

we use the so-called ‘patched sampling scheme’,17 which is based on the premise that a weakly

bound exciton is highly localized in reciprocal space around the valence and conduction band

edges. Following extensive convergence tests for CsPbI3 and CsPbBr3 (Figure S4), we find

that the exciton binding energies are converged within 1 meV using patch radii of 0.07 ×2π/a

for CsPbI3 and 0.25×2π/a for CsPbBr3, respectively, and densities equivalent to a uniform

(Γ-centered) 120×120×120 grid for CsPbI3 and 70×70 ×70 grid for CsPbBr3, respectively.

For our final converged calculations, we linearly interpolate the patch size (in unit of 2π/a)

and sampling grid density for all the mixed-halide compounds in the series CsPb(Brx I1–x )3.

Figure S5: (a) Comparison between BSE calculated exciton binding energies with a 6×6×6
k-point grid and hydrogenic model exciton binding energies with the RPA ε∞ calculated
with the same grid. (b) Comparison between BSE calculated exciton binding energies using
a dielectric function approximated as ε(r, r′) ∼ ε∞, with ε∞ calculated from RPA with a
12×12×12 k-point grid and hydrogenic model exciton binding energies with the same ε∞.
All data points are color coded according to the concentration of Br, as shown in the color
bar and the continuous black lines are the lines of perfect agreement between first principles
and hydrogenic model.
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In Figure S5a we show a comparison between exciton binding energies calculated from

GW+BSE as described above and binding energies using the hydrogenic model,18 Eb =

µ∗/(meε
2
∞) Ry, where me is the electron rest mass, 1 Ry = 13.6057 eV is the Rydberg

constant, and µ∗ is the reduced effective mass from our quasiparticle band structure

calculations. We find that ab initio exciton binding energies and hydrogenic model binding

energies agree remarkably well, within a difference of at most 4 meV. This comparison

indicates that the dielectric function can be approximated to be uniform throughout the

crystal. We note that exciton binding energies calculated as described above are based on

less converged RPA dielectric functions, as described in the previous section; according to

convergence tests shown in Figure S1b, the dielectric constant for CsPbI3 is underestimated

by approximately 25% in this setup, and this is bound to impact the accuracy of calculated

exciton binding energy. To improve on this, we use the observation made in Figure S5a, and

recalculate the exciton binding energy from BSE, by approximating the dielectric function

as ε(r, r′) ∼ ε∞ (uniform screening approximation), where ε∞ is the fully converged RPA

dielectric constant calculated using a 12× 12× 12 grid, as discussed in the previous section.

For completeness, we also compare these exciton binding energies against the Wannier-Mott

model and again obtain an excellent agreement. The exciton binding energies shown in

Figure 3c of the main manuscript are calculated using the uniform screening approximation,

using the best converged dielectric constant.

Calculated Charge-carrier Mobility Model

We calculate charge-carrier mobilities using a model proposed in Ref. 19, which assumes

parabolic bands of effective mass m∗ coupled to a single (highest energy) LO phonon with

energy ℏωLO, expressing the mobility µm as,
µm

eℏ/mekBT
=

0.052 (ℏωLO/kBT )
3.3 + 0.34

αm∗/me

.19 α

is the Fröhlich coupling constant given by α =
e2

ℏϵ0

(
m∗

2ℏωLO

)1/2(
1

ε∞
− 1

ε0

)
,20 where ε∞,

ε0 are the high- and low-frequency dielectric constants, and ϵ0 is the vacuum permittivity.
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All parameters in the expression of charge-carrier mobility are calculated in this work, and

reported in Table S1.

Table S1: Parameters used to calculate the mobility µm: high-frequency (ε∞) and static (ε0)
dielectric constants, the phonon energy of the principal LO mode (ℏωLO), the corrected hole
and electron effective masses (m∗

e/me, m
∗
h/me) , the calculated Fröhlich coupling constant for

hole and electron (αh, αe), the average electron and hole mobilities (µhm, µ
e
m) and electron-

hole sum mobility (µsum
m = µhm + µem)

Br (%) ε∞ ε0 ℏωLO (meV) m∗
h/me m∗

e/me αh αe µhm µem µsum
m

0 6.82 36.47 14.25 0.178 0.164 1.554 1.491 56.2 63.6 119.8
10 6.68 34.10 14.58 0.181 0.166 1.562 1.499 55.2 62.5 117.7
20 6.50 33.33 14.80 0.185 0.170 1.615 1.550 52.3 59.1 111.4
30 6.30 32.45 15.04 0.189 0.174 1.671 1.604 49.5 55.9 105.4
40 6.11 31.54 15.32 0.194 0.179 1.731 1.663 46.7 52.7 99.4
50 5.91 30.51 15.63 0.199 0.183 1.795 1.724 44.0 49.6 93.5
60 5.71 29.43 15.98 0.204 0.189 1.863 1.790 41.3 46.5 87.8
70 5.50 28.26 16.37 0.210 0.194 1.937 1.862 38.7 43.6 82.2
80 5.29 26.52 16.83 0.217 0.200 2.004 1.927 36.4 40.9 77.3
90 5.08 25.66 17.36 0.224 0.207 2.089 2.009 34.0 38.2 72.1
100 4.86 24.36 17.92 0.232 0.214 2.182 2.099 31.5 35.4 66.9
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Experimental Methods

Sample preparation

All materials were used as purchased with no additional purification. All solvents, unless

otherwise stated, were purchased from Sigma Aldrich. All precursor preparation and

deposition has been performed in a N2 filled glove box.

We used the following substrate cleaning procedure: z-cut quartz substrates were cleaned by

subsequent sonication in Decon90 (1 vol% in deionised water), deionised water, acetone and

isopropanol for 10 min each. After drying with a N2 gun, the substrates were treated with

UV-ozone for 15 mins.

FA0.83Cs0.17Pb(Brx I1–x )3 perovskite thin films were prepared as reported by Knight et al.21

Briefly, FA0.83Cs0.17PbI3 and FA0.83Cs0.17PbBr3 were formed by weighing the precursors salts

(formamidinium iodide, FAI, GreatCell Solar; cesium iodide, CsI, 99.99%, Alfa-Aesar; lead

iodide, PbI2, 99.999%, TCI; lead bromide, PbBr2, >98%, Alfa-Aesar) were weighed to exact

stoichiometry in an N2 filled glovebox. The precursor salts were dissolved in a 4:1 ratio by

volume of N,N-dimethylformamide (DMF, Sigma Aldrich) to dimethyl sulfoxide (DMSO,

Sigma Aldrich), to a concentration of 0.7 M. The solutions were stirred overnight before

deposition to form the intermediary Br composition, appropriate amounts of the solutions

were mixed. Each solution was stirred for at least 30 mins prior to deposition.

The perovskite films were deposited on z-cut quartz substrates using the following spin-

coating procedure:

Step 1: 50 µL of the precursor solution was deposited on to the quartz substrate which was

spinning at 1000 rpm. After 5 s, the substrate accelerated a final spin speed of 5000 rpm

over the course of 5 s.

Step 2: The substrate remained at 5000 rpm for 30 s. An antisolvent quench was performed

by depositing 50 µl of Anisole 5 s before the end of this step. The films were then annealed

at 100 °C for 30 min.
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Transmission and reflection spectroscopy in the visible range

Reflection and transmission spectra were measured using a Bruker 80v Fourier-transform

infra-red spectrometer with a tungsten halogen lamp source, a CaF2 beamsplitter and a

silicon diode detector. Data was collected with a resolution of 4 cm−1. A silver mirror was

used as reflection reference and a blank quartz substrate was used as transmission reference.

Terahertz spectroscopy

Time-domain terahertz spectroscopy (TDTS) and optical-pump terahertz-probe (OPTP)

measurements were performed using a Spectra Physics Mai Tai-Empower-Spitfire Pro

Ti:Sapphire regenerative amplifier. The amplifier generates 35 fs pulses centered at 800

nm at a repetition rate of 5 kHz. THz probe pulses were generated by a spintronic emitter

which was composed of 1.8 nm of Co40Fe40B20 sandwiched between 2 nm of Tungsten and

2 nm of Platinum, all supported by a quartz substrate. Detection of the THz pulses was

performed using electro-optic sampling in a 1-mm (100)-ZnTe crystal. The sample, THz

emitter and THz detector were held under vacuum (<10−2 mbar) during the measurements.

The optical pump excitation was obtained by frequency doubling the fundamental laser

output through a BBO crystal, resulting in 400 nm pulses. The FWHMs of the beams for

the pump and THz pulses at the sample are 2 mm and 0.6 mm respectively.

Modelling the Absorption Spectrum according to Elliott

Formula

Elliott’s theory describes the absorption of a semiconductor near the band edge.22 Here, we

follow the treatment described in Ref. 23, the total absorption coefficient α as a function of
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incident energy E is given by

α(E) =
A0

E
(

∞∑
n=1

4πE
3/2
b

n3
δ(E − (Eg −

Eb
n2

)) +
2π

√
Eb

E−Eg

1− exp(−2π
√

Eb

E−Eg
)
D(E)) (2)

where the pre-factor A0 is proportional to the transition dipole moment, Eb is the exciton

binding energy, Eg is the band gap, δ(E) is the Dirac delta function, andD(E) is proportional

to the joint density of states. D(E) = 0 below the band gap energy and is given by
√
E − Eg

for E > Eg. Broadening due to electron-phonon interactions, local fluctuations in the

stoichiometry of the material, and energetic disorder is represented by convolution of α(E)

with a normal distribution N(0,Γ2) which has mean 0 and standard deviation Γ.

Figure S6: Absorption spectra (visible range) of FA0.83Cs0.17Pb(Brx I1–x )3. Dots are
experimental data, dark solid lines are the Elliott fits, grey lines are the absorption of
the continuum without Coulomb enhancement (see Ref. 23), and shaded area shows the
contribution of the exciton resonance.
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Figure S7: band gap, exciton binding energy and the standard deviation Γ of
the normal distribution extracted from the Elliott fits to the absorption spectra of
FA0.83Cs0.17Pb(Brx I1–x )3.

The absorption spectra of the FA0.83Cs0.17Pb(Brx I1–x )3 series were fitted with the resultant

function. Figure S6 shows the spectra (experimental data as dotted lines and Elliott fit

as solid lines), and the individual absorption associated with the exciton, as well as the

absorption of the electron-hole continuum with and without the Coulomb enhancement, as

described in Ref. 23. The fitted parameters (exciton binding energy, band gap and the

standard deviation Γ of the normal distribution) are shown in Figure S7.

Determination of ε∞

In order to determine ε∞ from the reflectivity data, thin film interference effects must be

taken into account. In addition to the Fabry-Perot interference effects, the data is also

affected by a positive offset (likely associated with imperfections in the mirror reference

used) and other uncertainties associated with scatter, which are more pronounced in the

high Br content films. To fully take these factors into account, the experimental spectra

were fitted to the modelled R. The modelled R is obtained from transfer matrix calculations

for a sample comprising a semiconductor film of thickness d and refractive index r on a 2 mm

quartz substrate. To take into account roughness and inaccuracies in the thickness of the

films, d was allowed to vary within an interval ± 10 nm around the thickness values measured
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using a Dektak profilometer. A small, wavelength-independent offset is also introduced to

account for scatter and reference imperfections.
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Figure S8: Reflectivity spectra of FA0.83Cs0.17Pb(Brx I1–x )3 films. An offset of 0.1 has been
added between curves for clarity. Dotted lines are experimental data and solid lines are fits
to a transfer matrix model.

Figure S8 shows the experimental reflectivity spectra (dotted lines) and the corresponding

fits (solid lines). The values for the subgap refractive index obtained from the fits to the

reflectivity spectra were used to calculate the high-frequency dielectric constant ε∞, which

are shown in Figure S9.

Determination of ε0

The frequency-resolved THz spectra are obtained by varying the time delay between the THz

pulse and a gate beam and performing a Fourier transform of the time-domain transmission of

the THz radiation through the sample. The transmission through a blank quartz substrate is
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Figure S9: Values of ε∞ for the various compositions of FA0.83Cs0.17Pb(Brx I1–x )3 , calculated
from the refractive index fitted to the subgap reflectivity spectra.

taken as a reference. The transmission function T (ω) =
Tsample

Tsubstrate
as a function of the angular

frequency ω relates to the complex refractive index of the semiconductor film ñ according to

T (ω) =
(1 + ñs)

(1 + ñs)− i(ñ2 + ñs)ωd/c
(3)

where ñs is the substrate refractive index, and d is the thickness of the film.

The complex dielectric function ε = ε′ + iε′′ can be determined from the experimental THz

transmission spectra by substituting ñ2 = ε.

The contribution of a phonon mode to the dielectric function can be described by a Lorentzian

oscillator according to

εn(ω) = An
ω2
n

ω2
n − ω2 − iωγn

(4)

where An is the amplitude of the contribution of the mode, which is proportional to the

oscillator strength. ωn is the resonance frequency and γn is the damping constant. In the

present case of lead mixed halide perovskites, the experimental data can be successfully

described as a combination of two TO modes. The total ε is then given by

ε(ω) = ε∞ + εTO1 + εTO2 (5)
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Figure S10: THz dielectric function of FA0.83Cs0.17Pb(Brx I1–x )3 . Dots are experimental
data, solid line and shaded area are fits to Equation 5.

The values of ε∞ for the FA0.83Cs0.17Pb(Brx I1–x )3 series were obtained as described in the

previous section. The THz spectra were then fitted to Equation 5. Figure S10 shows the

experimentally measured THz spectra of the FA0.83Cs0.17Pb(Brx I1–x )3 films (dots) and the

corresponding fits (solid lines and shaded area).

The resonance frequencies ωn and damping constants γn of the phonon modes are optimised

by the fitting routine. The values of ωn obtained for the two modes as a function of the

Br composition are shown in Figure S11. The THz quasi-static dielectric constant ε0 at the

low-frequency end is obtained from the fitted spectra. Figure S12 shows the values of ε0 as
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Figure S11: Resonance frequencies (THz) of the two TO phonon modes obtained from fits
to the dielectric function of FA0.83Cs0.17Pb(Brx I1–x )3 .
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Figure S12: THz quasi-static dielectric constant ϵs obtained from fits to the THz dielectric
function of FA0.83Cs0.17Pb(Brx I1–x )3 .

a function of Br composition in the FA0.83Cs0.17Pb(Brx I1–x )3 series.

We note that the values obtained for both ε∞ and ε0 are likely affected by the uncertainties in

the measurement of the semiconductor film thickness and optical density. These uncertainties

can be associated with film roughness and also to material porosity. These factors, which

are more pronounced in the high-Br content films, could lead to the overestimation of the
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optical density and/or thickness and the underestimation of ε∞ and ε0.

Measured Charge-carrier Mobilities

The effective electron-hole sum mobility µm was extracted from the OPTP data using the

method previously described by Wehrenfennig et al.24 In brief, the sheet photo-conductivity,

∆S, of a material with a thickness much shorter than the wavelength of the THz radiation

can be expressed as

∆S = −ϵ0c(na + nb)(
∆T

T
) (6)

where c is the speed of light, ϵ0 is the vacuum permittivity, and na and nb are the THz

refractive indices of the materials interfacing the perovskite layer at the front and rear

respectively. The quantity ∆T/T is the ratio of the photo-induced change in THz electric

field to the transmitted THz electric field in the dark. The initial number of photo-excited

charge-carriers N is given by

N = ϕ
Eλ

hc
(1−Rpump − Tpump) (7)

with E being incident pump pulse energy, λ the excitation wavelength, ϕ the ratio of

free charges created per photon absorbed, and Rpump and Tpump being the reflected and

transmitted fractions of the pump beam. These two equations can be used to extract the

charge-carrier mobility µm through

µm =
∆SAeff

Ne
(8)

where Aeff is the effective area from the overlap of the pump and probe beams and e is the

elementary charge. Substituting Equations 6 and 7 into Equation 8 we obtain

ϕµm = − ϵ0c(na + nb)(Aeff)

Neλ(1−Rpump − Tpump)
(
∆T

T
) (9)

S19



from which the effective charge-carrier mobility ϕµm may be determined based on the pump

beam parameters and the initial measured ∆T/T of the sample. Here, µm is the charge-

carrier mobility, and ϕ is the charge-to-photon branching ration which is assumed to be unity

at room temperature. Charge-carrier mobility values were calculated based on the average

of at least 10 measurements.
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