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Nanowire Growth and Crystal Structure

InAs and InAs1-xSbx nanowires were grown vertically on GaAs(111)B substrates via molec-

ular beam epitaxy (MBE). The growth substrates were coated with a thin layer of silicon

oxide of thickness 4.5 mm, and the growth was performed without a foreign catalyst. For all

samples, the growth temperature was 520◦C. InAsSb wires with different Sb content were

obtained by changing the Sb flux while keeping all other growth parameters constant. The

nanowires presented in this work have Sb concentrations of 0%, 11 %, 16%, 21% and 35% and

diameters of 71±6 nm, 79±5 nm, 74±5 nm, 82±7 nm and 85±6 nm respectively. The length

for all nanowires was found to be approximately 2µm with a slight decrease with increased

Sb content. Detailed information about the nanowire growth can be found in Ref.1.1 All

samples were then transferred to z-cut quartz discs for measurements.

High-resolution TEM analysis was carried out using a FEI Tecnai OSIRIS operated at

200 keV. All InAsSb and InAs nanowires were imaged in order to analyse the crystal structure

as a function of Sb content for these NWs (Figure 1). All nanowires show a predominantly

zinc blende (ZB) crystal structure with a varying density of stacking defects. For the ref-

erence sample with InAs nanowires, the defect density was extracted to be greater than

300 interfaces/µm, and especially at the nanowire stem Wurtzite (WZ) stacking can also

be observed. For increasing Sb content, a strong decrease in defect density was observed,

with defect densities of ∼220 interfaces/µm, ∼100 interfaces/µm and ∼1 interface/µm for

InAsSb NWs with 16%, 21% and 35% Sb content, respectively. Above 16% Sb content, the

WZ phase is completely suppressed and nanowires with 35% Sb content are almost com-

pletely defect-free with only a few twins per micrometre. A full discussion of the effect of Sb

incorporation on the crystal structure can be found in Ref. 1.1

We would like to point out that the reported defect densities for nanowires with differ-

ent Sb content correspond to an average value along the nanowires. However, especially

for nanowires with intermediate Sb content, the defect density is not constant along the

nanowires. The high-resolution TEM micrographs presented in the main article correspond
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Figure 1: Crystal structure evolution along InAsSb nanowires. (a) TEM image of an InAs
nanowire. (b) TEM image of an InAsSb nanowire with 16% Sb. (c)-(e) High resolution TEM
images and selected area diffraction images at the nanowire stem, center and tip of 16% Sb
nanowire. (f) TEM image of a 35% Sb nanowire. (g) High resolution TEM image at the tip
of a 35% Sb nanowire. (h) Cross-sectional SEM image of the 35% Sb sample.
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to the crystal structure in the middle of a nanowire. The full crystal structure evolution

along nanowires with different Sb content is presented in Figure 1. Stacking defects can

be observed by sharp changes in contrast perpendicular to the nanowire axis. Figure 1 (a)

shows a TEM image of an InAs nanowire. The defect density is found to be roughly constant

along the nanowire. Figure 1(b) shows a TEM image of an InAsSb nanowire with 16% Sb,

and (c)-(e) show high-resolution TEM images and selected area diffraction images at the

nanowire stem, center and tip, as indicated with yellow rectangles. The defect density is

very low at the nanowire stem (a few defects per micrometre) and gradually increases along

the nanowire. At the nanowire tip, the crystal structure is found to be similar to a pure

InAs nanowires. The crystal structure evoluation along the nanowires explains the large

variation in defect density which was reported in Ref. 1.1 Figure 1(f) shows a TEM image

of a nanowire with 35% Sb. The crystal structure is defect-free zinc-blende along the whole

nanowire. A high resolution TEM image is shown in Figure 1(g). For completeness we note

that at the stem of InAsSb nanowires with a high Sb content additional faceting is often

observed. These facets can be explained by radial overgrowth and can be observed both in

TEM and SEM images (highlighted by yellow arrows in Figure 1(h)).

Experimental Details for Infrared Photoluminescence Spectroscopy

Nanowires were photoexcited with a continuous-wave Ventus laser at a centre wavelength

of 532 nm, at an average photoexcitation power of 2 mW. The beam path was focused onto

the sample to produce a beam spot size of approximately 1.2 mm2. The PL from the sample

was then coupled into a Vertex 800V FTIR spectrometer using a gold parabolic mirror and

an aperture of 8 mm. The PL signal was then detected via a liquid-nitrogen filled mercury

cadmium telluride (MCT) detector at a resolution of 50 cm−1. In order to spectral calibrate

for the response of the FTIR spectrometer, a blackbody spectrum of the mid-infrared source

within the FTIR was measured using the same settings as for the nanowire PL measurements.

The theoretical blackbody curve for the intensity I was calculated using the following formula:
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I =
2πhc2

λ5

1

exp(
hc

λkBT
)− 1

(1)

where h is the Planck constant, c the velocity of light and λ the wavelength. The Boltzmann

constant is depicted by kB and the temperature of the blackbody by T. The spectral response

for calibrating the PL spectra is created by dividing the polynomial fit of the measured

blackbody spectrum by these theoretical calculations. The PL spectra will be divided by

this value to account for the sensitivity of the detector.

Figure 2: Sensitivity of the liquid-nitrogen filled mercury cadmium telluride detector of the
measuring range.

As can be seen in figure Figure 2 the sensitivity of the MCT detector drastically decreases

from 0.9 to 0.2 for 0.2 and 0.4 eV, respectively. This causes a lower signal-to-noise ratio which

is detrimental to smaller signals.

Experimental Details for Raman Measurements

Raman measurements are done using the 488 nm line of Ar-Kr+ laser for excitation. The

laser with power of 250 µW is focused on the single nanowire using a microscope objective

with numerical aperture N.A.=0.75. The scattered light is collected by a TriVista spec-

trometer and detected by a CCD camera. The measurements are realized in back-scattering

geometry with the nanowires suspended over a trench, in order to enhance the response of
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the longitudinal optical phonon mode.2 The temperature measurements are done by using

a temperature controlled helium cryostat.

Data analysis for Raman measurements

The Raman lineshape of coupled mode can be evaluated using the dissipation fluctuation

theorem. We have considered the standard dielectric theory in the formalism of Hon and

Faust.3 The differential Raman cross section from coupled phonon-plasmon modes of a doped

two mode ternary alloy AxB1−xC has the form:4

∂2σ

∂ω∂Ω
∝ (nω + 1)I[

−1

ε(ω, x)
[

1

4π
+ 2

A1

ε∞,1
χ1(ω, x) + 2

A2

ε∞,2
χ2(ω, x)

−4π(
A1

ε∞,1
− A2

ε∞,2
)2χ1(ω, x)χ2(ω, x)−(1+

4π

ε∞(x)
χe(ω))ε∞(x)[(

A1

ε∞,1
)2χ1(ω, x)+(

A2

ε∞,2
)2χ2(ω, x)]]

(2)

where nω is the Bose-Einstein distribution, and ε(ω, x) is the the dielectric function of

the alloy and is given by:

ε(ω, x) = ε∞(x) + 4π(χ1(ω, x) + χ2(ω, x) + χe(ω)) (3)

where ε∞(x) is the average high-frequency dielectric function and ε∞(x)xε∞,1+(1−x)ε∞,2.

The i-sublattice contribution to the susceptibility is given by:

χi(ω, x) = xi
ε∞,i
4π

(ω0
LO,i)

2 − (ω0
TO,i)

2

(ω2
TO,i − ω2 − iωΓi)

(4)

where Γi is the phenomenological damping constant; ω0
TO,i and ω0

LO,i are the frequen-

cies of TO and LO modes of the pure end-member compounds; ωTO,i is the TO phonon
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frequency of the alloy i-sublattice; χe the electronic susceptibility contribution; and Ai =

C0
i

ω2
TO,i

(ω0
LO,i)

2−(ω2
TO,i)

2 with C0
i is the Faust-Henry coefficient for the pure member compound.

We calculate the electronic susceptibility using the Hydrodynamical model, as follows5 :

χe = −ε∞
4π

ω2
p

ω2− < v2 > q + iωΓe
(5)

where ωp is the plasma frequency ( ω2
p = 4π

ε∞
Ne2

m∗
); Γei s the damping constant related to

the lifetime of the plasmon,< v2 > the electron mean square velocity and q the wavevector.

Considering the low band gap energy of InAsSb, we expect that the non-parabolicity of

the conduction band is not negligible. For this reason, we use the Kane two band model to

calculate the electronic dispersionl:5

E(k) =
EG
2

[√
1 +

4

EG

~2k2

m∗
− 1

]
(6)

Experimental Details for Optical Pump Terahertz Probe

Spectroscopy

An amplified Ti:Sapphire laser with an average power of 4 W was used to generate 35 fs

pulses centred at 800 nm at a repetition rate of 5 kHz. Each pulse was separated into three

different paths: 590µJ/pulse as an optical pump to photoexcite the sample; 200µJ/pulse to

generate the THz probe via optical rectification in a 2mm GaP crystal; and 1.6µJ/pulse as

a gate beam for electro-optical detection of the transmitted THz pulse via a 200µm GaP

crystal. In order to obtain a range of sample photoexcitation fluences between 5µ J cm−2 to

26µ J cm−2 , the optical pump beam was attenuated by neutral density filters. At the sample,

the full width half maximum (FWHM) for the optical pump beam is 10 mm and for the THz
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probe is 1 mm, so that the THz probe measures an area of homogenous photoexcited carrier

density. The THz electric field, E, was measured using a balanced photodiode circuit and

a lock-in amplifier referenced to a chopper at 2.5 kHz in the THz generation beam. The

optical pump-induced change in the THz electric field, ∆E was measured using a second

lock-in amplifier referenced to a chopper at 125 Hz in the optical pump beam. By varying

the time delays between all three beams, a 2D map of the THz spectral response as a function

of time after photoexcitation can then be measured. By also varying the power of the optical

pump beam, a THz spectra response as a function of photoexcitation fluence can also be

obtained. All measurements were taken at room temperature with the THz beam under

vacuum to avoid any absorption of THz radiation by atmospheric water vapour.

Data Analysis of Terahertz Measurements

Extracting the Nanowire Equilibrium Conductivity

Terahertz time-domain spectroscopy (THz-TDS) measures the transmission function, T (ω),

of the NWs, which is directly related to the NW conductivity at equilibrium, σ(ω), as

well as the dielectric function, εnw(ω), and refractive index of the NWs, ñ(ω). To extract

this equilibrium NW conductivity from the transmission function, the NW geometry and

the nature of the EM wave propagation through the sample must be considered, as the

characteristic dimensions of the NWs are much smaller than the diffraction-limited spot size

of the incident THz probe pulse (∼1 mm). An effective medium theory (EMT) is therefore

necessary, where the NWs and surrounding medium are considered as a single composite

layer, l, with an effective complex dielectric function, εl(ω), effective complex refractive

index, ñl, effective conductivity, σl(ω) and effective thickness, dl. For these measurements,

the sample consists of a composite NW layer, which is supported by a quartz substrate of

known complex refractive index, ñs, and thickness, ds. Within the composite layer, the NWs

occupy a volume fraction, f , and the remainder of the volume is vacuum.
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The theoretical expression for the transmission function, T (ω), can be derived by con-

sidering the Fresnel transmission and reflection of a wave propagating through the sample

at normal incidence. For the geometry used in our work, the expression is given as:

T (ω) =
Enw(ω)

Eref(ω)

=
2ñl (ñv + ñs)

(ñv + ñl) (ñl + ñs)
exp

(
iωd1

c
(ñl − ñv)

)
FPvlsFPlsv

FPvsv

,

(7)

where ñi are the frequency-dependent complex refractive indices, c is the speed of light in

a vacuum and the subscripts v, l and s denote the vacuum, composite layer and substrate

respectively. The Fabry-Pérot terms, FPijk, account for multiple internal reflections in the

composite layer and substrate and are defined as:

FPijk =
P∑
p=0

(
rjkrji exp

(
2iñjωdj

c

)p)
, (8)

where rij = (ñi− ñj)/(ñi + ñj) are the Fresnel reflection coefficients. The summation limit P

is set by the number of internal reflections recorded in the Enw(t) and Eref(t) waveforms.

Therefore, from the experimentally measured transmission function, T (ω) and the known

properties of the surrounding media, the theoretical expression for T (ω) can be solved ana-

lytically to obtain ñl and the complex dielectric function of the composite layer, εl = ñ2
l . For

NW samples, the composite layer is usually very thin in comparison to the wavelength of the

THz radiation (dl � λTHz, P →∞) and the substrate is often very thick (ds ≥ λTHz, P = 0),

so that the expression or the transmission function can be simplified using the following ap-

proximations:
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| ñlωdl

c
| � 1, (9)

| ñvωdl

c
| � 1, (10)

exp

(
iñlωdl

c

)
= 1 +

iñlωdl

c
= 1, (11)

FPlsv = 1, (12)

FPvsv(ω) = 1, (13)

FPvls =

(
1− rlsrlv exp

(
2iñlωdl

c

))−1

. (14)

By noting that the complex refractive index of the vacuum is ñv = 1 and applying these

approximations, the transmission function becomes:

T (ω) =
(1 + ñs)

(1 + ñs)−
iωdl (ñ2

s + ñs)

c

. (15)

By rearranging this transmission function and substituting εl = ñ2
l , the effective complex

dielectric function of the composite layer can be calculated:

εl =
ic(1 + ñs)

ωl

(
1

T (ω)
− 1

)
− ñs. (16)

Once the complex dielectric function, εl, is determined, εl = εL,l + iσl/ωε0 can then be used

to extract the effective conductivity of the composite layer:

σl(ω) =
ε0c(1 + ñs)

dl

(
1

T (ω)
− 1

)
+ iωε0(ñs + εL,l(ω)). (17)
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In the case of a highly conductive sample, this effective conductivity can be approximated

to:

σl(ω) =
ε0c(1 + ñs)

d1

(
1

T (ω)
− 1

)
. (18)

Hence, from THz-TDS measurements, the effective conductivity of the NWs on substrate

can be extracted from the experimental value of the THz transmission function.6 However,

it is important to note that to obtain the conductivity of the NWs alone (σ(ω)) rather than

the composite conductivity (σl(ω)), an appropriate effective medium theory (EMT) must be

applied.

Extracting the Nanowire Photoconductivity

Optical-pump terahertz probe (OPTP) spectroscopy measures the relative photoinduced

change in THz transmission, ∆T
T

, through the NW sample, which is directly related to the NW

photoconductivity, ∆σ(ω). Just as for the extraction of the NW equilibrium conductivity,

calculation of the NW photoconductivity requires consideration of the sample geometry and

the propagation of the THz pulse through the sample with and without photoexcitation,

so an EMT must be used. Thus, the same sample geometry shown in6 is used. Yet, in

addition, the absorption depth of the photoexcitation pulse must also be taken into account.

The substrate itself exhibits no photoconductivity response and the thin composite layer is

uniformly photoexcited. By considering the wave propagation through the sample as before,

a theoretical expression for ∆T
T

can be derived:

∆T (ω)

T (ω)
=

EON
nw (ω)

EOFF
nw (ω)

− 1

=
(ñv + ñ∗l )(ñ∗l + ñs)

(ñv + ñl)(ñl + ñs)
exp

(
iωdl

c
(ñ∗l − ñl)

)
FP ∗vlsFP

∗
lsv

FPvlsFPlsv

− 1,

. (19)
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where the superscript * denotes the values taken when the NWs are photoexcited. The

experimentally measured ∆T
T

, as well as the known values of the thickness and refractive index

of the substrate can then be substituted into this theoretical expression, leaving ñ∗l and ñl as

unknown. As again the NWs are much thinner than the THz wavelength (dl � λTHz, P →

∞) and the underlying substrate is very thick (ds ≥ λTHz, P = 0), the same approximations

as outlined in Section 3.8.2 can be utilised to give the ratio of the photoinduced change in

THz transmission to the THz transmission at equilibrium:

∆T (ω)

T (ω)
=
iωdl

c

(ñ∗2l − ñ2
l )

(1 + ñs)
. (20)

This ratio can be rearranged to give the photoinduced change in refractive index:

ñ∗2l − ñ2
l = −ic(1 + ñs)

ωdl

∆T (ω)

T (ω)
. (21)

This equation can be used to extract the complex dielectric function of the composite layer,

as ñ∗2l − ñ2
l = ε∗l − ε1. By utilising the definition, ε∗l − εl = i∆σl/ωε0, the effective photocon-

ductivity of the composite layer can then be determined:

∆σl(ω) = −ε0c(1 + ñs)

dl

∆T (ω)

T (ω)
. (22)

The effective photoconductivity is therefore directly proportional to
∆T

T
, which is usually

probed as a function of time after photoexcitation in OPTP studies. Thus, when examining

how the experimentally measured
∆T

T
changes with time after photoexcitation, the pho-

toconductivity decay and thereby carrier dynamics of the NWs are being investigated. To

extract the conductivity of the NWs alone, an appropriate EMT can again be applied and
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the NW photoconductivity extracted as both a function of time after photoexcitation and

frequency.6

Applying Effective Medium Theory

In order to extract both the equilibrium and photo-induced conductivities for the nanowires

exactly, an effective medium theory must be applied. Here, we apply the Bruggeman effective

medium theory, which takes the following form:

f
εnw − εl
εnw + κεl

+ (1− f)
εh − εl
εh + κεl

= 0. (23)

This formula can be rearranged to solve for εnw in the following way:

εnw = εl

(
f(εh + κεl)− (1− f)κ(εh − εl)
f(εh + κεl) + (1− f)(εh − εl)

)
. (24)

In the above equation, κ is related to the depolarisation factor, which depends on the NW

geometry and orientation relative to the electric field polarisation of the THz pulse: κ =

2 for spherical particles and κ = 1 for infinitely long cylinders oriented with their axes

perpendicular to the THz electric field.

Although other EMTs that exist,7 for analysis of the NW conductivity, both the Maxwell-

Garnett and Bruggeman EMTs are the most appropriate, as they are derived considering the

local depolarisation fields arising in NWs under the applied electric field. This provides a link

to the plasmon model, which is similarly based on the depolarisation fields in semiconductor

NWs. This link can therefore be exploited by considering the Maxwell-Garnet approximation

for conducting and non-conducting NWs. In the non-conducting case, εnw = εL,nw and

εl = εL,l, so ?? becomes:
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εL,l = εh

(
κf(εL,nw − εh) + (εL,nw + κεh)

−f(εL,nw − εh) + (εL,nw + κεh)

)
. (25)

In the conducting case, εnw = εL,nw +
iσ

ωε0
and εl = εL,l +

iσl

ωε0
and ?? becomes:

εL,l +
iσl
ωε0

= εh

 κf(εL,nw +
iσ

ωε0
− εh) + (εL,nw +

iσ

ωε0
+ κεh)

−f(εL,nw +
iσ

ωε0
− εh) + (εL,nw +

iσ

ωε0
+ κεh)

 . (26)

Combining Equation 25 and Equation 26 and solving for σl, gives:

σl(ω) =

A

B
σnw

B + (1− f)
iσnw

ωε0

, (27)

where the constants A and B are defined as:

A = fε2h(κ+ 1)2

B = −f(εL,nw − εh) + (εL,nw + κεh)

. (28)

Substituting in the Drude equation into Equation 27 gives:

σl(ω) =
A

B2

Ne2

m∗
iω

ω2 − ω2
0 + iωγ

, (29)

where the resonant frequency is given by:
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ω0 =

√
(1− f)

B

Ne2

m∗ε0
. (30)

Thus, the conductivity takes the same functional form as the plasmon response described

earlier and the resonant frequency displays the same dependence on the
√
N as for the

plasmon response. From the conductivity expression of the composite layer, the equilibrium

NW conductivity can be extracted:

σnw(ω) =
Bσl

A

B
− (1− f)

iσl

ωε0

. (31)

Using the knowledge that ∆σnw = σ∗nw − σnw, the following expression for the NW conduc-

tivity can then be derived:

∆σnw =
B(σl + ∆σl)

A

B
− (1− f)

iσl + ∆σl

ωε0

− Bσl

A

B
− (1− f)

iσl

ωε0

∆σnw =
A∆σl(

A

B
− (1− f)

i(∆σl + σl)

ωε0

)(
A

B
− (1− f)

iσl
ωε0

)
. (32)

Extracting the Nanowire Transport Parameters

From the extracted photoinduced NW conductivity, several transport parameters can be

extracted: the charge carrier density, carrier lifetime, surface recombination velocity, effective

charge carrier mobility and mean free path. Firstly, the charge carrier density is directly

related to the NW conductivity and can be obtained via the following equation:
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n =
2m∗
πe2

∫ ∞
0

σl (ω) dω, (33)

where m∗ is the effective mass of the charge carrier and e is the electronic charge. By probing

how this carrier density changes with time after photoexcitation, the carrier lifetime can be

determined by fitting the following carrier rate equation to the photoconductivity decay:

dn

dt
= −αn− βn2 − γn3, (34)

where α is the monomolecular recombination rate, β is the bimolecular radiative recombina-

tion rate and γ is the Auger recombination constant. For materials that are known to exhibit

surface trapping, measurement of the photoconductivity decay for NWs of different diame-

ters can determine the surface recombination velocity. The NW geometry is approximated

as a cylinder of infinite length and a continuity equation describing the carrier concentration

profile is given by:

∂ (∆n)

∂t
= D

∂2 (∆n)

∂r2
− ∆n

τvolume

= −S∆n, (35)

where S is the surface recombination velocity, D is the diffusion constant and τvolume is the

electron lifetime of the bulk material. The solution of this continuity equation gives an

exponential time decay of the carrier density with the following carrier lifetime:

1

τ
=

1

τvolume

+
4β2D

d2
=

1

τvolume

+
4S

d
, (36)
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where d is the NW diameter. This equation can then be fitted to plots of the photocon-

ductivity decay to determine the carrier lifetime and surface recombination velocity of the

material.

Furthermore, the effective carrier mobility, φµ, can be extracted from the measured value

of the photoconductivity and is given by:

φµ =
∆σl,max(ω)Aeff

φ
npe, (37)

where µ is the mobility, Aeff is the effective area of the optical pump and THz pulse overlap,

φ is the photon-to-carrier conversion rate and np is the photoexcited charge carrier density,

which for a sample of thickness d equates to:

np =
I

Ed

(
1− e−d/α

)
, (38)

where I is the photoexcitation fluence, E is the photon energy and α is the absorption depth

at the excitation wavelength for the material. By taking the peak value of the photocon-

ductivity measured after photoexcitation and calculating the photoexcited carrier density,

the effective carrier mobility can then be calculated. It is important to note that as the

photon-to-carrier conversion rate is unknown for this method, the effective carrier mobil-

ity is a lower limit, which becomes equal to the actual carrier mobility when all photons

absorbed are converted to free charge carriers. The effective carrier mobility is also a sum

of the carrier mobilities for both electrons and holes, as the two contributions cannot be

separated. From this effective carrier mobility, the carrier scattering rate, mean free path,

diffusion constant and length can then be obtained from the following equations respectively:
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µ =
eτ

m∗
,

λmfp = vτ = (σn)−1,

D =
kbTµ

e
,

L = (Dτ)1/2 ,

(39)

where τ is the carrier scattering rate, λmfp the mean free path, D the diffusion constant,

L the diffusion length, kb = 1.38 × 10−23JK−1 is the Boltzmann constant and v is the

average carrier velocity. Thus, numerous key transport parameters can be determined from

extraction of the photoconductivity from OPTP measurements.

Fitting to Photoconductivity Spectra

The complex photoconductivity of a free carrier plasma with a plasmon resonance can be

described by the following equation:

∆σ (n,m∗, γ) =
ine2ω

m∗ (ω2 − ω2
0 + iωγ)

, (40)

where n is the carrier density, e is the electronic charge, m∗e is the effective mass of the charge

carrier, and γ is the momentum scattering rate. ω0 is the plasmon resonance frequency given

by:

ω0(n,m∗) =

√
gne2

m∗εrε0
, (41)

where εr is the dielectric constant of GaAs nanowires at terahertz frequencies, ε0 is the

permittivity of free space, and g is a constant that depends on the nanowire geometry and
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surrounding dielectric medium.8 In order to account for any unintentional doping within

the samples, the photoconductivity expression must be modified, as there is a charge carrier

density present without photoexcitation that produces its own plasmon response.6,9,10 It is

important to note that for InAs nanowires, the hole conductivity is expected to be negligible

due to the donor-like nature of the surface states in InAs nanowires. Therefore, for the

purposes of these samples, the photoconductivity expression can expressed as:

∆σ =
ie2ω

m∗e

[
ntotal

ω2 − {ω0(ntotal)}2 + iωγ
− nd

ω2 − {ω0(nd)}2 + iωγ

]
, (42)

where ntotal = nphoto + nd is the sum of the photoexcited and donated electon density.

For each sample, a global fitting routine was applied to all the photoconductivity spectra

at various photoexcitation fluences with g fixed to 0.25.11 nd was set to a global param-

eter, remaining constant for all spectra, whereas np and γe were allowed to vary as local

parameters for each spectrum, as the photoexcited electron density and scattering rates vary

with photoexcitation fluence. Bulk values for InAs of 0.023me, 0.41me and 15.15 were used

for m∗e, m∗h and εr respectively add a citation. The solid lines in Figures 3 and 4 in the

main manuscript represent the fits for Equation 42 with the measured photoconductivity

spectra, showing excellent agreement for all samples. From these fits, the carrier mobilities

and extrinsic carrier concentrations were extracted.

Full Temperature Dependence of Terahertz Photocon-

ductivity Spectra and Raman Spectra for InAs0.65Sb0.35

and InAs Reference Nanowires

Figure 3 shows the full temperature dependence of terahertz photoconductivity spectra for

both the InAs reference nanowires and InAs0.65Sb0.35 nanowires taken at 5 ps after pho-
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toexcitation at a fluence of 190µ J cm−2 . As explained in the main manuscript, all spectra

show a clear Lorentzian response with the plasma frequency falling at the point where the

imaginary part of the photoconductivity crosses the x-axis. As the temperature is decreased,

a narrowing in this Lorentzian response along with a slight red-shift in the plasma frequency

is observed. This is indicative of an increase in mobility and decrease in carrier concentration

with decreasing temperature, as expected.

Figure 3: Real (blue) and imaginary (red) part of the photoconductivity taken at 5 ps after
photoexcitation at a fluence of 244µ J cm−2 as a function of frequency for (a-i) the InAs
reference nanowires and (j-r) the InAs0.65Sb0.35 nanowires. Spectra are presented in order of
decreasing temperature: (a,j) 300 K, (b,k) 260 K, (c,l) 220 K, (d,m) 180 K, (e,n) 140 K, (f,o)
80 K, (g,p) 50 K, (h,q) 30 K and (i,r) 10 K.

Figure 4 shows the full temperature dependence of the Raman spectra for a single InAs

reference nanowire and a single InAs0.65Sb0.35 nanowire. The nanowires were photoexcited

at an average power of 250µW at an excitation wavelength of 488 nm. As seen in the main

manuscript, a coupled LOPCM mode is observed, with the contributions of this coupled

mode displayed by the solid blue lines. Similar to the THz measurements, a narrowing of
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the LOPCM mode accompanied by a red-shift with decreasing temperature is exhibited,

indicating an increases in mobility and decrease in carrier concentration respectively.

Figure 4: Raman intensity as a function of Raman shift for (a-h) the InAs reference
nanowires and (i-p)the InAs0.65Sb0.35 nanowires. Spectra were taken for a single nanowire
excited at 488nm with an average power of 250µW. The red line represents a Lorentzian fit
for the TO and LO modes, where the blue line represents the fit for the LOPCM mode. The
spectra are presented in order of decreasing temperature as follows: (a,i) 300 K, (b,j) 250 K,
(c,k) 200 K, (d,l) 150 K, (e,m) 100 K, (f,n) 50 K, (g,o) 30 K, and (h,p) 14 K.
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