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Materials & Methods 

Thin Film Preparation 

The stock solution was prepared by dissolving CsBr (Alpha Aesar, 99.999 % metals basis), 

BiBr3 (Alpha Aesar, 99.9 % metals basis) and AgBr (Alpha Aesar, 99.998 % metals basis) and 

SbBr3 (Alpha Aesar, 99.5 % metals basis) in 1 mL DMSO (Sigma Aldrich, anhydrous, ≥99.9 

%) by vigorous stirring at 130 °C for 60 minutes to obtain a 0.5 M solution. All Steps were 

performed in a nitrogen-filled glovebox with controlled atmosphere.  

The substrates were cleaned with a detergent (Hellmanex), followed by washing with acetone 

and ethanol and dried under an air stream. Afterwards, the substrates were cleaned with oxygen 

plasma for 5 minutes and immediately transferred into the glovebox. Prior to the spincoating 

step, the substrates and the solution were placed on a hotplate (Heidolph with internal 

temperature sensor) at temperatures between 50 °C (Cs2AgBi1-xSbxBr6 solutions) and 60 °C 

(pure Cs2AgBiBr6 solution) to be preheated. The stock solution was constantly stirred. The thin 

films were fabricated by spincoating the warm solution dynamically (1000 rpm for 10 s, 

followed by a second step at 6000 rpm for 35 seconds) onto the preheated substrates (70 µL of 

the solution were dropped immediately after the substrate started to spin at 1000 rpm). 

After the spincoating, the thin films were annealed at different temperatures and times, 

dependent on the stoichiometry. For Cs2AgSbBr6, Cs2AgSb0.8Bi0.2Br6, Cs2AgSb0.6Bi0.4Br6, 

Cs2AgSb0.4Bi0.6Br6, and Cs2AgSb0.2Bi0.8Br6, preheating was set at 50 °C and thin films were 

annealed at 135 °C for 20 minutes. For Cs2AgBiBr6 preheating was set at 60 °C and thin films 

were annealed at 275 °C for 5 minutes. 
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Absorption Measurements 

UV-Visible-NIR absorption spectra were measured using a Bruker-Vertex 80v Fourier-

Transform Infrared (FTIR) spectrometer fitted with a transmission/reflection accessory. 

Spectra in the region 1.2 – 2.6 eV were taken by using a tungsten halogen source and Si 

detector, and spectra in the region 2.6 – 3.7 eV were taken by using a tungsten halogen source 

and a Si detector. The two datasets obtained were stitched by matching the absorbance curves 

at 2.6 eV. 

 

X-ray Diffraction 

X-ray Diffraction (XRD) patterns were measured using a PANalytical X’Pert powder 

diffractometer, using radiation from a Cu K-α1 source, across 2θ values ranging from 5 – 45°. 

The scan speed was 0.01 °/s and the step size was set to 0.004 °.  In order to correct against 

sample tilt, the z-cut quartz peak at 2θ = 16.43° was used as a reference to pin the patterns 

measured on quartz substrates. 

 

Optical-Pump-Terahertz-Probe Spectroscopy 

We performed optical pump terahertz probe (OPTP) experiments by using a setup described in 

detail elsewhere.1 In brief, an amplified Ti:sapphire laser system (Spectra-Physics Spitfire) 

provides 800-nm light pulses with 5-kHz repetition rate and 35-fs pulse duration. Using this 

fundamental output, single-cycle THz radiation pulses are generated in a spintronic emitter 

(W/Co40Fe40B20/Pt multilayer film on quartz) via the inverse spin Hall effect.2 Furthermore, 

samples are excited by 400-nm pulses, generated by second-harmonic generation in a beta-

barium-borate (BBO) crystal. Fractional changes in the THz transmission in the range 0.5-2.5 

THz following photoexcitation are measured by using free-space electro-optic (EO) sampling. 

Detection of the THz pulses is performed using electro-optic sampling in a 1-mm-thick (110)-
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ZnTe crystal. We measured Cs2AgSbxBi1-xBr6 thin films deposited onto 2 mm thick z-cut 

quartz. During OPTP measurements, the THz emission and detection optics and samples are 

kept under vacuum at pressures below 0.1 mbar.  
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Supporting Note 1: Analysis of X-ray Diffraction Patterns 

As described in the Main Text, we determined the phase purity and structure of the 

Cs2AgSbxBi1-xBr6 thin films through XRD measurements. XRD patterns reported in the Main 

Text (Figure 1b) confirm the double perovskite structure for all the thin films in the studied 

series. In agreement with previous reports (References 3-4), we assigned all the main XRD 

peaks according to the reference patterns found in Refs. 4-5. 

 

 

Figure S1 | X-ray diffraction peak shifts in the Cs2AgSbxBi1-xBr6 thin film series. Shift in the position of (022) 

diffraction peaks measured for the Cs2AgSbxBi1-xBr6 thin film series. 

 

As shown in Figure S1, we observed a continuous shift in the main XRD peaks from larger to 

smaller 2q values with increasing bismuth content. A similar peak shift could be observed for 

all the main XRD peaks in the measured diffractograms. These shifts are consistent with the 
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different ionic radii of Sb3+ (smaller) and Bi3+ (larger), which underlie the differences in lattice 

constant previously reported for Cs2AgSbBr6 4 and Cs2AgBiBr6 5. To confirm the presence of 

alloying, we estimated lattice constants from the position of four XRD peaks (020), (022), 

(222), (040). The lattice constant values are found to increase continuously with increasing 

bismuth content between the endpoints: 11.190±0.006 Å for Cs2AgSbBr6 and 11.260±0.002 Å 

for Cs2AgBiBr6, and consistently with previous reports by Hoye and coworkers.3 

Altogether, these continuous shifts in the lattice constant (Figure S2) and the absence of 

noticeable peak splittings (Figure S1) confirm homogeneous alloying between Cs2AgSbBr6 

and Cs2AgBiBr6 and the absence of phase segregation. 

 

Figure S2 | Calculated lattice constant for the Cs2AgSbxBi1-xBr6 thin film series. Cubic lattice constant 

estimated using Bragg’s law for the Cs2AgSbxBi1-xBr6 thin film series plotted as a function of the bismuth content. 

Reported values are the average between lattice constants estimated for four different XRD reflections (020), 

(022), (222), (040). Error bars represent the associated standard deviation. Dashed line is a guide to the eye. 

 

Despite the absence of noticeable peak splitting, we observed differences in the full width at 

half maximum (FWHM) for the peaks. Similar effects of the XRD peak widths have been 
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reported by Hoye and coworkers and have been attributed to differences in the grain sizes. To 

confirm this, we estimated grain sizes for different compositions by using the Scherrer 

equations. As shown in Figure S3, we observe larger FWHM for alloyed samples, 

corresponding to smaller grain sizes. 

 

Figure S3 | Grain sizes for the Cs2AgSbxBi1-xBr6 thin film series. FWHM of the (022) diffraction peak (green 

squares) and estimated grain sizes (cyan squares) calculated using the Scherrer equation for different compositions 

of the Cs2AgSbxBi1-xBr6 thin film series. Dashed lines are a guide to the eye. 
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Figure S4 | Energy of the first exciton peak for the Cs2AgSbxBi1-xBr6 thin film series. Energies of the lowest 

exciton transition, obtained by Gaussian fitting of the lowest peak in the absorption spectra shown in Figure 1 of 

the Main Text, and plotted as a function of the bismuth fraction on the trivalent metal site. 
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Figure S5 | Fluence-dependent optical-pump-THz-probe (OPTP) measurements. Fluence-dependent 

photoconductivity transients measured for (a) Cs2AgSbBr6, (b) Cs2AgSb0.8Bi0.2Br6, (c) Cs2AgSb0.6Bi0.4Br6, (d) 

Cs2AgSb0.4Bi0.6Br6, (e) Cs2AgSb0.2Bi0.8Br6, and (f) Cs2AgBiBr6 thin films after 3.1-eV pulsed excitation. Solid 

lines represent fits to the two-level mobility model. Open circles are experimental data, and solid lines represent 

fits to the two-level mobility model. 
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Figure S6 | Photoconductivity spectra for the Cs2AgSbxBi1-xBr6 thin film series. Terahertz photoconductivity 

spectra measured in the range 0.5-2.5 THz for (a) Cs2AgSbBr6, (b) Cs2AgSb0.8Bi0.2Br6, (c) Cs2AgSb0.6Bi0.4Br6, 

(d) Cs2AgSb0.4Bi0.6Br6, (e) Cs2AgSb0.2Bi0.8Br6, and (f) Cs2AgBiBr6 thin films. Spectra were measured in 

correspondence of the photoconductivity peak at a fluence of 83 µJ cm-2. Dark and light dots represent the 

experimental data for the real and imaginary part of the photoconductivity, respectively. The shaded area indicates 

the standard deviation of the measured signal and give an estimate of the associated error. 
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Supporting Note 2: Derivation of charge-carrier mobility from OPTP measurements 

We extracted effective charge-carrier mobility by fitting OPTP transients with a two-level 

mobility model developed by Wright et al. and Buizza et al..1, 6. The adopted method is based 

on the approach developed by Wehrenfennig et al.7 Here, for materials with thicknesses smaller 

than the wavelength of the incident THz radiation, the sheet photoconductivity can be derived 

from the fractional change in the transmitted THz electric field Δ𝑇 𝑇⁄ , and can be expressed as 

∆𝑆 = 	−𝜖!𝑐(𝑛" + 𝑛#) ,
∆𝑇
𝑇 - (S1) 

where n3 = 2.13 and n1 = 1 are the refractive indexes of quartz and vacuum, respectively.8 

Here, in order to derive the effective charge-carrier mobility from the sheet photoconductivity, 

the number of initially photogenerated carriers is defined as  

𝑁 = 	𝜙
𝐸𝜆
ℎ𝑐 31 − 𝑅$%&$ − 𝑇$%&$7 

(S2) 

Where 𝜙  is the photon-to-charge branching ratio (i.e., the fraction of generated charges per 

absorbed photon absorbed), E is the pump pulse energy, 𝜆 is the excitation wavelength, and 

Rpump and Tpump are the reflectance and transmittance of the sample at the excitation wavelength 

(400 nm, 3.1 eV). Here, Equation S1 and Equation S2 can be used to extract the charge-carrier 

mobility µ through the relation  

𝜇 =
Δ𝑆	𝐴'((
𝑁𝑒  (S3) 

 

Where Aeff is the effective overlap area between THz and pump beam and e is the elementary 

charge. Substituting Equation S1 and Equation S2 into Equation S3, we obtain the effective 

(i.e., multiplied by the photon-to-charge branching ratio) charge-carrier mobility as: 

𝜙𝜇 = 	−𝜖!𝑐(𝑛) + 𝑛*)
𝐴'((ℎ𝑐

𝑒𝐸𝜆(1 − 𝑅$%&$ − 𝑇$%&$)	
,
∆𝑇
𝑇 - (S4) 
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We note that the sheet photoconductivity signal measured by OPTP arises from the 

contributions of both photogenerated free electrons and holes. Therefore, the extracted charge-

carrier mobility is the electron-hole sum mobility. 

To better capture the effect of charge carrier localization process on charge-carrier mobilities 

in silver-bismuth halides, Wright and Buizza developed a two-level mobility model.1, 6 In this 

model, photoconductivity of the material is described as the sum of photoconductivities for two 

different states: a delocalized state and a localised state with population and mobility 

(𝑛!"# , 𝜇!"#)	 and (𝑛#$% , 𝜇#$%) , respectively. Assuming a predominantly monomolecular 

recombination from the localised state, the carrier population is defined by the following set of 

coupled rate equations: 

<

𝑑𝑛+',
𝑑𝑡 = −𝑘,-.𝑛+',(𝑡)

𝑑𝑛,-.
𝑑𝑡 = 	𝑘,-.𝑛+',(𝑡) − 𝑘"𝑛,-.(𝑡)

 (S5) 

 

Here, kloc and k1 are the localization and monomolecular recombination rates, respectively. As 

described in details in Refs. 6 and 1, the resulting Δ𝑇 𝑇⁄  signal can be described as: 

 

∆𝑇
𝑇 =	−

𝑁𝑒
𝜖0𝑐(𝑛1 + 𝑛3)𝐴𝑒𝑓𝑓	

,-𝜇!"# −
𝜇#$%𝑘#$%
𝑘#$% − 𝑘&

0 𝑒'(!"#)	 +
𝜇#$%𝑘#$%
𝑘#$% − 𝑘&

	𝑒'($)	3 (S6) 

 

Furthermore, to fit the experimental data reported in Figure 2a and Figure S5, we convoluted 

Equation S6 with a Gaussian function with broadening 𝜎 = 250	𝑓𝑠  to account for the 

instrumental response function, as described in Reference 1. 
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Photoconductivity Spectra 

Frequency-dependent photoconductivity spectra can give insight into the transport mechanism 

of free charge carriers in a semiconductor. Several different models (e.g., Drude, Drude-

Lorentz, Drude-Anderson, Cole-Davison, Cole-Cole)9 have been proposed to describe the 

photoconductivity spectra at THz frequencies and separate possible contributing scattering 

mechanisms.10 Most of the proposed models are based on the Drude model of charge-carrier 

transport. This model describes the motion of charge carriers under an oscillating electric field 

with frequency 𝜔, and assumes completely randomized charge-carrier velocity upon random 

scattering events with a characteristic scattering time 𝜏 .11 The resulting Drude complex 

conductivity 𝜎+(𝜔) is given by: 

𝜎+(𝜔) =
𝑛𝑒,𝜏
𝑚∗ -

1
1 − 𝑖𝜔𝜏0 (S7) 

 

where m* is the charge-carrier effective mass and n is the charge-carrier density. To better 

describe the photoconductivity response of semiconductor nanomaterials, the Drude-Smith 

model has been introduced as a phenomenological adaptation of the Drude model, which 

includes directional scattering events (i.e., backscattering) to describe scattering from 

surfaces.12 Recently, Marcus and coworkers shown that this phenomenological model can be 

interpreted as a special case within the formalism of memory functions.13 Here, the 

backscattering event is described by the phenomenological c coefficient (varying from 0 to -

1), where 𝑐 = −1 indicates a complete velocity reversal on the first collision. According to the 

Drude-Smith formulation, the complex conductivity can be expressed as: 
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𝜎+.(𝜔) =
/"%0
1∗ A

&
&'230

+ %
(&'230)%

B. (S8) 

 

Furthermore, in principle, the Drude-Smith model would allow the extraction of charge-carrier 

mobility value defined	as	𝜇+. = (1 + 𝑐) "0
1∗.	However, we also note that in the limit of 𝑐 = −1 

𝜇+. tends to infinity.14 Therefore, in cases of substantial backscattering, 𝜇+. would be largely 

overestimated and its determination is avoided here. 

 

 

Supporting Note 3: First-Principles Calculations of the Electronic Structure 

Density functional theory (DFT) calculations were performed using the Vienna ab-initio 

simulation package (VASP) code15 and the projector-augmented wave (PAW) method to 

describe core-valence electrons interactions.16 We employed code-supplied PAW potentials 

that include semicore electrons explicitly, since they have been show to influence the electronic 

structure.17 The valence configurations are reported in Table S1.We applied the Perdew-Burke-

Ernzerhof (PBE)18 form of the generalized gradient approximation to describe exchange-

correlations interactions and the Tkatchenko-Scheffler scheme19 to describe dispersive 

interactions. We set the plane-wave cutoff to 800 eV, used a 3×3×3	Γ-centered k-grid, and a 

total-energy threshold of 10-6 eV. 

 

Table S1: Valence electron configurations of the PAW potentials used in the DFT calculations in VASP. 

Element Valence configuration 

Cs 5s25p66s1 

Ag 4s24p64d105s1 

Bi 5s25p65d106s26p3 

Sb 4s24p64d105s25p3 
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Br 3s23p63d104s24p5 

 

This setup was used to relax the cell shape and ionic positions of a series of 10 primitive cells 

with different volumes, until the maximum residual force was lower than 10-4 eV/Å. The lattice 

parameters were then obtained by fitting the calculated energy as a function of cell volume to 

a Birch-Murnaghn equation of state 20-21. The resulting lattice parameters are in good agreement 

with the our experimental results and with those reported in the literature, with an error below 

1% (see Table S2). The final structures used in the subsequent electronic band structure and 

effective mass calculations were obtained by relaxing the ionic degrees of freedom of the cell 

with optimized lattice parameters. 

 

Table S2: DFT-calculated lattice constants (in Å) of Cs2AgBiBr6 ad Cs2AgSbBr6. The relative errors of the 

calculated parameter with respect to our measure and literature-reported values are shown in parenthesis. 

Compound DFT Experimental Literature 

Cs2AgBiBr6 11.196 11.260 (0.6%) 11.271 (0.7%) Ref. 5  

Cs2AgSbBr6 11.091 11.190 (0.9%) 11.158 (0.6%) Ref. 4  

 

Spin-orbit coupling (SOC) was included in non-self-consistent calculations of the band 

structure from the charge densities calculated by self-consistent DFT. Including SOC has a 

strong impact ont the band gap and band dispersion at the CBM of Cs2AgBiBr6, while the effect 

is weaker for Cs2AgSbBr6 but not negligible. Specifically, SOC interactions reduce the 

fundamental indirect (XàL) gap of Cs2AgBiBr6 by 185 meV, whereas the reduction for 

Cs2AgSbBr6 is almost negligible (28 meV). Furthermore, including SOC changes the position 

of the direct gap in the Brillouin zone for both compounds from the L = A&
,
, &
,
, &
,
B to the X =

A&
,
, 0, &

,
B point. Moreover, SOC reduces the direct gap of Cs2AgBiBr6 by 721 meV and that of 
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Cs2AgSbBr6 by 150 meV. The stronger influence of SOC on the direct and indirect gaps of 

Cs2AgBiBr6 are caused by the strong spin-orbit interactions of Bi 6p orbitals participating in 

the CBM of the heavier Bi ion. 

 

Figure S7 | Effect of spin-orbit coupling on the band structures of Cs2AgSbBr6 and Cs2AgBiBr6. (a) band 

structure of Cs2AgBiBr6 and (b) Cs2AgSbBr6, with (red lines) and without (blue lines) including spin-orbit 

coupling effects. 

 

We calculated the effective mass tensors at the PBE+SOC level of theory by calculating the 

second-order partial derivatives using the valence and conduction band energy, 𝐸/(𝒌), with 

respect to the k vector along the three Cartesian directions: 

-
1
𝑚∗0 𝑖𝑗 =

1
ℏ,
𝜕,𝐸/(𝒌),

𝜕𝑘2𝑘6
=
1
ℏ,

⎝

⎜
⎜
⎜
⎛

𝜕,𝐸
𝜕𝑘7,

𝜕,𝐸
𝜕𝑘7𝜕𝑘8

𝜕,𝐸
𝜕𝑘7𝜕𝑘9

.
𝜕,𝐸
𝜕𝑘8,

𝜕,𝐸
𝜕𝑘8𝜕𝑘9

. .
𝜕,𝐸
𝜕𝑘9, ⎠

⎟
⎟
⎟
⎞

 (S9) 

The second derivatives were calculated numerically using second-order central differences on 

a 5 stencil grid with a converged step size of 0.01 Bohr-1, as implemented in the EMC code.22 

After diagonalizing the effective mass tensor, we obtained the longitudinal (𝑚∥) and transversal 

(𝑚;) components of the electron and hole effective masses (see Table S1). For the electrons, 
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𝑚∥ corresponds to the path from L to Γ in the Brillouin zone (heavy electrons), while for holes, 

𝑚∥ corresponds to the direction from X to Γ (light holes). 

 

Table S3: Effective mass tensor eigenvalues of Cs2AgBiBr6 and Cs2AgSbBr6 calculated around the VBM (X 

point) and CBM (L point). The masses are reported in the units of the electron rest mass m0. 

 Electron Effective mass (𝒎𝟎) Hole Effective mass (𝒎𝟎) 

 𝒎∥,𝒆 𝒎;,𝒆 𝒎;,𝒆 𝒎∥,𝒉 𝒎;,𝒉 𝒎;,𝒉 

Cs2AgBiBr6 0.44 0.29 0.29 0.17 0.68 0.68 

Cs2AgSbBr6 0.30 0.26 0.26 0.15 0.73 0.73 

 

Following a Drude model, the conductivity effective masses (see Table 1 in the main text) can 

be calculated as a harmonic mean of the longitudinal and transversal effective masses as 

𝑚%$/!
∗ = 3 A &

1∥
+ ,

1(
B
'&

. Furthermore, the effective mass anisotropy,	𝜆, can be estimated as 

proposed by Schindlmayr23: 𝜆 = A1(
1∥
B
&/A

. The effective mass is isotropic when 𝜆à1 and more 

anisotropic when 𝜆  is larger or smaller than one. For clarity, we quantify the degree of 

anisotropy by 𝛽 = |1 − 𝜆|, as shown in Table 1 in the Main Text. The hole effective masses 

are more anisotropic than electron effective masses (𝛽B > 4𝛽" ) for both Cs2AgBiBr6 and 

Cs2AgSbBr6. Substituting Bi by Sb reduces the longitudinal electron effective mass and makes 

𝑚"
∗  more isotropic, while 𝑚B

∗  becomes more anisotropic due to an increased transversal hole 

effective mass. 

Biega et al.24-25 reported that effective mass anisotropy is related to the deviation from the 

hydrogenic exciton model and estimated a larger exciton binding energy for Cs2AgSbBr6, 

compared with Cs2AgBiBr6. 
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Supporting Note 4: Discussion on free charge carriers and excitons populations 

The analysis of the equilibrium exciton and free charge-carrier populations in semiconductors 

is conventionally based on Saha equation.26-27 This formalism describes exciton formation and 

dissociation in terms of a chemical equilibrium between exciton (X) and free charge carriers, 

as 𝑋
	
↔	𝑒' + ℎC. Here, the fraction of free charge-carrier 𝑛D to the total excitation density 𝑛)$) 

is defined as branching ratio 𝛼 = 𝑛D	 𝑛)$)⁄ , with 𝑛)$) = 𝑛D + 𝑛7  where 𝑛7  is the exciton 

density. According to the Saha formalism, the branching ratio is given by: 

𝛼,

1 − 𝛼 =
1

𝑛EFE𝜆G!
exp -

−𝐸H
𝑘I𝑇

0 (S10) 

 

Where, we define the exciton De Broglie wavelength as 𝜆J	 = ℎ f2𝜋𝜇𝑘K𝑇⁄ , and the exciton 

reduced mass as 𝜇 = 𝑚"𝑚B (𝑚" +𝑚B)⁄ .  

Here, we note that the Saha equation, given a few parameters such as the exciton binding 

energies, temperature, and the effective masses, estimates the free-carrier and exciton density 

at the thermal equilibrium. This equilibrium condition is not compatible with the transient 

experimental condition in OPTP measurements. Therefore, the a branching ratio obtained from 

the Saha equation does not directly reflect the photon-to-charge carrier branching ratio f which 

factors the OPTP signal. Several processes and factors, such as exciton formation, excess 

excitation energy, and charge-carrier cooling could occur in the first few ps, thereby making it 

difficult to accurately predict f.  

While Saha equation predictions cannot be used to quantify f, we note that they qualitatively 

predict a reduced free charge-carrier density in Cs2AgSbBr6 with respect to Cs2AgBiBr6. In the 
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hypothesis of similar exciton formation dynamics and charge-carrier cooling processes, this 

qualitatively supports our conclusion that increased excitonic effects could play a role in the 

observed lower effective mobilities for Sb-containing double perovskites. 

 

 

Figure S8 | Free charge carriers branching ratio for Cs2AgSbBr6 and Cs2AgBiBr6. Free-charge-carrier-to-

total-carriers branching ratio plotted as a function of the total excitation density for Cs2AgSbBr6 (orange line) and 

Cs2AgBiBr6 (blue line). The branching ratio a is defined as 𝛼 = 𝑛) 𝑛*+*⁄ . Therefore, a =1 indicates the absence 

of stable excitons, while a =0 indicates the absence of free charge carriers. Branching ratio curves are obtained 

by solving the Saha equation at room temperature (298 K) with exciton binding energies and exciton-reduced 

mass estimated by Biega et al.25. The dashed line indicates a typical excitation density reached in OPTP 

experiments (i.e., 1018 cm-3) 
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